

MAT 22A Final Exam Solutions (Summer Session I 2020)

1. Determine whether the following statements are true or false. (No need to show work) (20 points, 2 points each)
 - Suppose Q is an orthogonal matrix. Then $Q\mathbf{x} = \mathbf{b}$ has the solution $\mathbf{x} = Q^T\mathbf{b}$.
 - Suppose $\{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ is a basis of some subspace S . If $n < k$ and $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ is linearly independent, then $\{\mathbf{w}_1, \dots, \mathbf{w}_n\}$ is also a basis of S .
 - Let A be an $m \times n$ matrix and $n > m$. If $\text{rank}(A) = n$, then $\text{N}(A)$ is $(n - m)$ -dimensional.
 - The column space of A and the nullspace of A are orthogonal complements.
 - If $\lambda = 0$ is an eigenvalue of A , then A is invertible.
- Let $A = \begin{bmatrix} 1 & 2 & 4 & 5 \\ 0 & 0 & 2 & 5 \\ 0 & 0 & 5 & 7 \\ 0 & 4 & 1 & 2 \end{bmatrix}$. $\det(A) = -44$.
- $\det((A^{-1})^T) = \det(A)$
- If E_{ij} is an elimination matrix, then $\det(E_{ij}A) = \det(A)$.
- $\det((AB)^T) = \det(A) \det(B^T)$
- If λ is an eigenvalue of A , then $\frac{1}{\lambda^2}$ is an eigenvalue of $(A^{-1})^2$.

Solution.

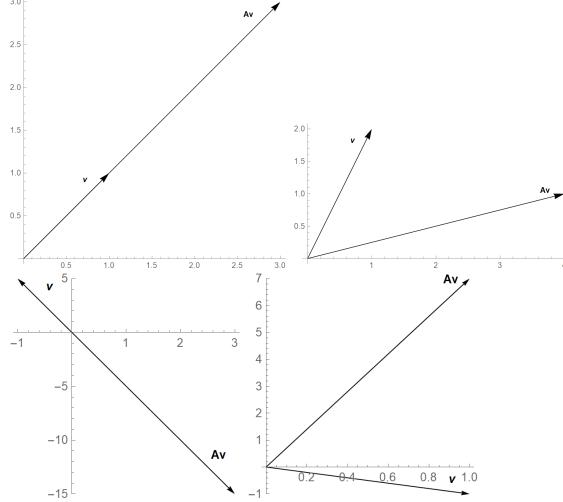
- True
- False
- False
- False
- False
- True
- False
- True
- True
- True

□

2. Clearly explain your reasoning for the following problems. (25 points)

(a) Suppose \mathbf{v}_1 and \mathbf{v}_2 are orthogonal. Prove that \mathbf{v}_1 and \mathbf{v}_2 are linearly independent. (10 points)

(b) Determine the eigenvalue-eigenvector pairs of A from the following plots. (10 points)



(c) Compute the determinant of the following matrix. (5 points)

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 4 & 3 & 2 & 2 \\ 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 6 & 8 & 10 \\ 9 & 2 & 1 & 2 & 3 \end{bmatrix}$$

Solution.

(a) Consider

$$c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 = \mathbf{0}.$$

Multiplying by \mathbf{v}_1^T we get

$$c_1 \|\mathbf{v}_1\|^2 = 0$$

since $\mathbf{v}_1^T \mathbf{v}_2 = 0$ by orthogonality. Since $\mathbf{v}_1 \neq \mathbf{0}$, this means that $c_1 = 0$. Then $c_2 = 0$. Thus, \mathbf{v}_1 and \mathbf{v}_2 are linearly independent.

(b) From the diagram, we see that the top left and bottom left plots show \mathbf{v} and Av lie on the same line. Therefore, $\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ $\lambda = 3$ and $\mathbf{v} = \begin{bmatrix} -1 \\ 5 \end{bmatrix}$ $\lambda = -3$ are the eigenvector eigenvalue pairs of A .

(c)

□

3. Consider the following matrix A . (20 points)

$$A = \begin{bmatrix} 1 & 2 & 2 & -1 \\ 2 & 4 & 4 & -2 \\ 2 & 0 & 0 & 2 \\ 2 & 0 & 2 & 3 \end{bmatrix}$$

- (a) Find a basis of the column space of A .
- (b) Find a basis of the left nullspace of A .
- (c) Write $\mathbf{b} = \begin{bmatrix} 2 \\ 1 \\ -1 \\ -4 \end{bmatrix}$ as $\mathbf{b} = \mathbf{s} + \mathbf{t}$ where $\mathbf{s} \in C(A)$ and $\mathbf{t} \in C(A)^\perp$.
- (d) What are the dimensions of the four fundamental subspaces of A ?

Solution.

- (a) We find that

$$\text{rref}(A) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & -\frac{3}{2} \\ 0 & 0 & 1 & \frac{1}{2} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

so $\begin{bmatrix} 1 \\ 2 \\ 2 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 2 \\ 4 \\ 0 \\ 0 \end{bmatrix}$, and $\begin{bmatrix} 2 \\ 4 \\ 0 \\ 2 \end{bmatrix}$ form a basis of $C(A)$.

- (b) We solve $\text{rref}(A^T)\mathbf{x} = \mathbf{0}$ and find

$$\text{rref}(A^T) = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

and so $\mathbf{x} = \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}$.

- (c)
- (d) The column space and row space are 3-dimensional. Then the left nullspace and the nullspace are 1 dimensional.

□

4. Find the $A = QR$ decomposition of A where Q is an orthogonal matrix and R is an upper triangular matrix. Then use the QR decomposition to solve $A\mathbf{x} = \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix}$. (Use back substitution to solve $R\mathbf{x} = \mathbf{c}$) (20 points)

$$A = \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$$

Solution.

First, to find Q , we use Gram-Schmidt to find an orthonormal basis of $C(A)$. We see that the solutions of A are linearly independent, so first we orthogonalize.

$$\mathbf{w}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\begin{aligned} \mathbf{w}_2 &= \begin{bmatrix} 2 \\ -1 \end{bmatrix} - \frac{\begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ -1 \end{bmatrix}}{\left\| \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\|^2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ &= \begin{bmatrix} 2 \\ -1 \end{bmatrix} - \frac{1}{2} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ &= \begin{bmatrix} \frac{3}{2} \\ -\frac{3}{2} \end{bmatrix}. \end{aligned}$$

Now, normalizing the vectors, we find that

$$\mathbf{q}_1 = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}, \quad \mathbf{q}_2 = \begin{bmatrix} \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} \end{bmatrix}$$

so

$$Q = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{2} \\ \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{2} \end{bmatrix}.$$

Now,

$$\begin{aligned} R &= Q^T A \\ &= \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{2} \\ \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix} \\ &= \begin{bmatrix} \frac{2}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{3}{\sqrt{2}} \end{bmatrix}. \end{aligned}$$

Now,

$$R\mathbf{x} = Q^T \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix}$$

so

$$\begin{bmatrix} \frac{2}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{3}{\sqrt{2}} \end{bmatrix} \mathbf{x} = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{\sqrt{2}}{2} \\ \frac{1}{\sqrt{2}} & -\frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} \sqrt{2} \\ \sqrt{2} \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix}.$$

Thus,

$$\mathbf{x} = \begin{bmatrix} \sqrt{2} \\ 0 \end{bmatrix}$$

□

5. Find the $A = X\Lambda X^{-1}$ decomposition of A^2 . Here Λ is a diagonal matrix whose entries are the eigenvalues of A and X is a matrix whose columns are the eigenvectors of A . If $B = V \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} V^{-1}$, show that A and B are similar matrices. (10 points)

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & -1 & -1 \end{bmatrix}$$

Solution.

First, we find the eigenvalues of A .

$$\det(A - \lambda I) = (-1 - \lambda)(1 - \lambda)(-\lambda)$$

so $\lambda_1 = -1$, $\lambda_2 = 1$, and $\lambda_3 = 0$. Now we find the eigenvectors of A . for $\lambda_1 = -1$

$$\begin{bmatrix} 2 & -1 & 0 \\ 0 & 1 & 0 \\ 2 & -1 & 0 \end{bmatrix} \mathbf{v}_1 = \mathbf{0}$$

so $\mathbf{v}_1 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. Next, $\lambda_2 = 1$ we have

$$\begin{bmatrix} 0 & -1 & 0 \\ 0 & -1 & 0 \\ 2 & -1 & -2 \end{bmatrix} \mathbf{v}_2 = \mathbf{0}$$

so $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$. Finally $\lambda_3 = 0$, we have

$$\begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & -1 & -1 \end{bmatrix} \mathbf{v}_3 = \mathbf{0}$$

so $\mathbf{v}_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$. \square

Thus,

$$\Lambda = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad X = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

and we find that

$$X^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ -1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

Then $A = X\Lambda X^{-1}$, so $A^2 = X\Lambda^2 X^{-1}$. Now, since $B = V\Lambda V^{-1}$ and $A = X\Lambda X^{-1}$, we see that $B = VX^{-1}AXV^{-1}$. Let $C = VX^{-1}$. Then $C^{-1} = XV^{-1}$. Thus, $B = CBC^{-1}$, so A and B are similar matrices.

6. Find the projection of $\mathbf{b} = \begin{bmatrix} 2 \\ 4 \\ 4 \\ 4 \end{bmatrix}$ onto $S = \text{span} \left\{ \begin{bmatrix} 1 \\ 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} -2 \\ 1 \\ 1 \\ -2 \end{bmatrix}, \begin{bmatrix} -4 \\ 7 \\ 7 \\ 1 \end{bmatrix} \right\}$.
 (10 points)

Solution.

First, we need to determine whether the given vectors are linearly independent. We have

$$\begin{aligned}
 \begin{bmatrix} 1 & -2 & -4 \\ 2 & 1 & 7 \\ 2 & 1 & 7 \\ 1 & -2 & 1 \end{bmatrix} r_2 - 2r_1 &= \begin{bmatrix} 1 & -2 & -4 \\ 0 & 5 & 15 \\ 0 & 5 & 15 \\ 0 & 0 & 5 \end{bmatrix} r_1 + \frac{2}{5}r_2 \\
 &= \begin{bmatrix} 1 & 0 & 2 \\ 0 & 5 & 15 \\ 0 & 0 & 0 \\ 0 & 0 & 5 \end{bmatrix} r_3 - r_2 \\
 &\vdots \\
 &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} r_4 - r_1
 \end{aligned}$$

First,

$$A^T A = \begin{bmatrix} 1 & 2 & 2 & 1 \\ -2 & 1 & 1 & -2 \\ -4 & 7 & 7 & 1 \end{bmatrix} \begin{bmatrix} 1 & -2 & -4 \\ 2 & 1 & 7 \\ 2 & 1 & 7 \\ 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 10 & 0 & 23 \\ 0 & 10 & 20 \\ 25 & 20 & 115 \end{bmatrix}$$

and so

$$(A^T A)^{-1} = \begin{bmatrix} \frac{3}{5} & \frac{2}{5} & -\frac{1}{5} \\ \frac{2}{5} & \frac{21}{50} & -\frac{4}{25} \\ -\frac{1}{5} & -\frac{4}{25} & \frac{2}{25} \end{bmatrix}.$$

Now,

$$\begin{aligned}
 \mathbf{p} &= \begin{bmatrix} 1 & -2 & -4 \\ 2 & 1 & 7 \\ 2 & 1 & 7 \\ 1 & -2 & 1 \end{bmatrix} \begin{bmatrix} \frac{3}{5} & \frac{2}{5} & -\frac{1}{5} \\ \frac{2}{5} & \frac{21}{50} & -\frac{4}{25} \\ -\frac{1}{5} & -\frac{4}{25} & \frac{2}{25} \end{bmatrix} \begin{bmatrix} 1 & 2 & 2 & 1 \\ -2 & 1 & 1 & -2 \\ -4 & 7 & 7 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 4 \\ 4 \end{bmatrix} \\
 &= \begin{bmatrix} 2 \\ 4 \\ 4 \\ 4 \end{bmatrix}.
 \end{aligned}$$

□