

1. Determine whether the following statements are true or false. (No work required) (18 points)

(a) The linear combination $a \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ fills a line. a and b are real numbers.

(b) The vectors $\begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ and $\begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$ are orthogonal.

(c) $\mathbf{x} = \mathbf{0}$ is a solution to $A\mathbf{x} = \mathbf{0}$.

(d) If A is an $k \times n$ matrix and B is an $n \times \ell$ matrix, then $(AB)^T$ is an $\ell \times k$ matrix.

(e) If A and B are symmetric matrices, then $AB = BA$.

(f) If the columns of A are linearly dependent, then A is invertible.

(g) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_2 \\ \mathbf{a}_3 \end{bmatrix}$ produces the matrix $\begin{bmatrix} \mathbf{a}_1 \\ \mathbf{a}_3 \\ \mathbf{a}_2 \end{bmatrix}$.

(h) The set of $n \times n$ upper triangular matrices are a subspace of the vector space of $n \times n$ matrices.

(i) If A is an $m \times n$ matrix and $m < n$, then $A\mathbf{x} = \mathbf{0}$ has a nonzero solution.

2. Sketch the column picture and row picture of the following system. (7 points)

$$\begin{aligned} 2x + y &= -1 \\ -x + 2y &= 1 \end{aligned}$$

3. Solve the following system using the inverse of the coefficient matrix. (10 points)

$$\begin{aligned} 2x_1 - 4x_2 - 6x_3 &= 0 \\ x_1 + 2x_2 + 1x_3 &= 4 \\ -2x_1 + 4x_3 &= -1 \end{aligned}$$

4. Find the LU -decomposition of the coefficient matrix and use back-substitution followed by forward-substitution to solve the following system. (15 points)

$$\begin{aligned} 4x_1 + 2x_2 - 2x_3 &= 4 \\ 2x_1 - x_2 - x_3 &= 6 \\ 3x_1 + x_3 &= -7 \end{aligned}$$

5. Find the nullspace of the following matrix and determine the rank of A . (10 points)

$$A = \begin{bmatrix} 1 & 0 & 2 & 1 & 1 \\ 2 & 1 & -1 & 0 & 1 \\ 1 & -2 & 0 & 2 & -1 \end{bmatrix}$$