

MAT 22A Problem Set 1 (Due 6/26 8 AM)

1. Let

$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 2 \\ 2 \\ 0 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} 2 \\ 0 \\ 3 \end{bmatrix}.$$

Describe the following linear combinations geometrically where $a, b, c \in \mathbb{R}$.
(Lie on a line, lie in a plane, etc.)

- (a) $a\mathbf{v}$
- (b) $a\mathbf{v} + b\mathbf{w}$
- (c) $a\mathbf{v} + b\mathbf{w} + c\mathbf{u}$
- (d) $a\mathbf{v} + c\mathbf{u}$
- (e) $a\mathbf{v} + b\mathbf{w} + c\mathbf{u}$

2. Draw the following vectors in the xy -plane.

- (a) $\mathbf{v} = (2, 1)$
- (b) $\mathbf{w} = (-1, 1)$
- (c) $\mathbf{v} + \mathbf{w}$
- (d) $\mathbf{v} - \mathbf{w}$

3. Let

$$\mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}.$$

Do the vectors \mathbf{v} , \mathbf{w} lie in a plane? If so, what is the equation of the plane? If not, find the vector equation of the line that passes through the origin and points in the same direction as \mathbf{v} and \mathbf{w} .

4. Consider the linear combination

$$a \begin{bmatrix} 2 \\ 1 \end{bmatrix} + b \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

where $0 \leq a \leq 4$ and $-1 \leq b \leq 0$. Shade the region covered by the linear combination.

5. If possible, find a and b so that

$$a\mathbf{v} + b\mathbf{w} = \mathbf{c}$$

where

(a)

$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

(b)

$$\mathbf{v} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 2 \\ 1 \\ 2 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}$$

6. Let

$$\mathbf{v} = \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, \quad \mathbf{w} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \quad \mathbf{u} = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}.$$

Compute the following

- (a) $\mathbf{v} \cdot \mathbf{w}$
- (b) $\mathbf{v} \cdot (\mathbf{w} + \mathbf{u})$
- (c) Check the Schwarz inequality $|\mathbf{v} \cdot \mathbf{w}| \leq \|\mathbf{v}\| \|\mathbf{w}\|$.

7. Let $\mathbf{v} \in \mathbb{R}^{2n}$ such that $v_i = 1$ for $i = 1, 2, \dots, 2n$. Find a unit vector \mathbf{u} that points in the same direction as \mathbf{v} . Find a vector \mathbf{w} that is perpendicular to \mathbf{v} .

8. Prove

$$\|\mathbf{v} + \mathbf{w}\|^2 + \|\mathbf{v} - \mathbf{w}\|^2 = 2\|\mathbf{v}\|^2 + 2\|\mathbf{w}\|^2.$$

9. Prove

$$\|\mathbf{v} - \mathbf{w}\|^2 = \|\mathbf{v}\|^2 - 2\|\mathbf{v}\| \|\mathbf{w}\| \cos \theta + \|\mathbf{w}\|^2.$$

10. Let $\mathbf{w} = (a, b, c)$ and $\mathbf{v} = (c, b, a)$ where $a + b + c = 0$. Find the angle between \mathbf{w} and \mathbf{v} .