

MAT 22A Problem Set 3 (Due 7/1, 8 AM)

1. Find the multipliers ℓ_{ij} to reduce the following systems to an upper triangular system:

(a)

$$\begin{aligned} 2x + 3y + z &= 1 \\ 2x + 3y - z &= 2 \\ 3x + y + 2z &= 1 \end{aligned}$$

(b)

$$\begin{aligned} ax + by &= c \\ dx + ey &= f \end{aligned}$$

2. Solve the following system using elimination to reduce the system to a triangular system. Then use back substitution to find the solution.

$$\begin{aligned} x + y + z &= -1 \\ 2x - y - 3z - t &= 1 \\ x + y + t &= 2 \\ 4x - z + 2t &= -1 \end{aligned}$$

3. Find c so that the linear system below

- (a) requires a row exchange.
- (b) is singular.
- (c) does not require a row exchange.

$$\begin{aligned} x + 2y + z &= 4 \\ 3x + cy + 3z &= 2 \\ -y + z &= 1 \end{aligned}$$

Finally, find the solution to the system in terms of c .

- 4. Let $A \in \mathbb{R}^{n \times n}$. Use the matrix-matrix multiplication definition to show that $AI = A$ where I is the identity matrix.
- 5. Let $A \in \mathbb{R}^{m \times n}$ and $B, C \in \mathbb{R}^{n \times \ell}$. Use the matrix-matrix multiplication definition to show that $A(B + C) = AB + AC$.
- 6. Find an example of A and B (4×4 matrices) such that
 - (a) $AB = BA$.
 - (b) $AB \neq BA$.

Assume A and B are not the zero matrix or the identity matrix.

7. Consider the following system of linear equations

$$\begin{aligned} 2y - z + t &= 1 \\ 3x + 4y - z &= 1 \\ x - 2y + t &= 1 \\ x + t &= 1. \end{aligned}$$

Solve the system using a sequence of elimination matrices E_{ij} and permutation matrices P_{ij} . Let C be the product of the matrices used to reduce the system to triangular form. Compute C and show that CA is an upper triangular matrix where A is the coefficient matrix.

8. Let

$$A = \begin{bmatrix} 1 & a & b \\ 0 & 1 & a \\ 0 & 0 & 1 \end{bmatrix}.$$

Compute A^n .

9. Let $A \in \mathbb{R}^{n \times n}$ with entries

$$a_{ij} = \begin{cases} 1 & i = j - 1 \\ 0 & \text{otherwise.} \end{cases}$$

Compute

- (a) A^2 ,
- (b) A^{n-1} ,
- (c) A^n .

10. Compute AB using the 4 different perspectives of matrix-matrix multiplication

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 2 & 1 & -1 \\ 1 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}.$$