

1. Let

$$P_n = \left\{ f : f = \sum_{\alpha=0}^n c_\alpha x^\alpha, \quad c_\alpha \in \mathbb{R} \right\}$$

be the set of polynomials of degree n . Show that P_n is a vector space.

2. Let V be the space of real-valued functions. A function is odd if $f(-x) = -f(x)$ and even if $f(-x) = f(x)$. Let W be the set of odd real-valued functions and X the set of even real valued functions. Is W a subspace of V ? Is X a subspace of V ?

3. Let V be the set of pairs (x, y) with $x, y \in \mathbb{R}$. Define

$$\begin{aligned} (x_1, y_1) + (x_2, y_2) &= (x_1 + x_2, 0) \\ c(x_1, y_1) &= (cx_1, 0) \end{aligned}$$

where $c \in \mathbb{R}$. Is V with these operations a vector space?

4. Show that the set of real diagonal matrices forms a vector space.

5. For the following matrices (a) Find the nullspace of A and (b) Find the rank of A .

$$(i) \quad A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 0 \end{bmatrix}$$

$$(ii) \quad A = \begin{bmatrix} 1 & 2 \\ 3 & 2 \\ 1 & 0 \end{bmatrix}$$

$$(iii) \quad A = \begin{bmatrix} 1 & 2 & -1 & 0 & 1 & -1 \\ 1 & 2 & 2 & 0 & 1 & 0 \\ 0 & 0 & 2 & 3 & 2 & -1 \end{bmatrix}$$