

1. Find a basis and determine the dimension of the four fundamental subspaces for the following matrices

(a) $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 1 \end{bmatrix}.$

(b) $A = \begin{bmatrix} 1 & 3 & 2 & 4 \\ 2 & 6 & 3 & 4 \\ 1 & 3 & 3 & 8 \end{bmatrix}.$

2. Find the dimension of each of the four fundamental subspaces for the following matrices

(a) A is a 5×20 matrix and $\text{rank}(A)=3$.

(b) A is a 4000×100 matrix and $\text{rank}(A) = 15$.

3. Prove that if $\text{rank}(A)=r$, then A is the sum of r rank 1 matrices.

4. Let

$$a_1 = (1, -1) \quad b_1 = (1, 0)$$

$$a_2 = (2, -1) \quad b_2 = (0, 1)$$

$$a_3 = (-3, 2) \quad b_3 = (1, 1).$$

Is there a linear transformation from \mathbb{R}^2 into \mathbb{R}^2 so that $Ta_i = b_i$ for $i = 1, 2, 3$? If so, find T .

5. Prove that the following are linear transformations or provide an example that shows that it is not a linear transformation. If it is a linear transformation, describe the space the transformation maps to, and describe the vectors in the nullspace.

(a) Let V be the vector space \mathbb{R}^2 . $T(x_1, x_2) = (x_2, x_1)$.

(b) Let V be the vector space \mathbb{R}^2 . $T(x_1, x_2) = (\cos(x_1), x_2)$.

(c) Let V be the vector space \mathbb{R}^n , A an $m \times n$ matrix and \mathbf{b} an $m \times 1$ column vector. $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$.

(d) Let V be the vector space of $n \times n$ real matrices and B a fixed $n \times n$ matrix. $T(A) = AB - BA$.

(e) Let V be the vector space of real continuous functions. $(Tf)(x) = \int_a^x f(t) dt$.

(f) Let V be the vector space \mathbb{R}^n . $T(\mathbf{v}) = \|\mathbf{v}\|$.

(g) Let V be the vector space of n -degree polynomials. $(Tf)(x) = \frac{d^2}{dx^2} f(x)$.