

MAT 22A Problem Set 7 Solutions

1. Find a basis and determine the dimension of the four fundamental subspaces for the following matrices

$$(a) \ A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 1 \end{bmatrix}.$$

$$(b) \ A = \begin{bmatrix} 1 & 3 & 2 & 4 \\ 2 & 6 & 3 & 4 \\ 1 & 3 & 3 & 8 \end{bmatrix}.$$

Solution.

(a) First we find $\text{rref}(A)$.

$$\begin{aligned} \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 1 \end{bmatrix} r_2 - 2r_1 &= \begin{bmatrix} 1 & 2 & 4 \\ 0 & 0 & -7 \end{bmatrix} r_1 + \frac{7}{4}r_2 \\ &= \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & -7 \end{bmatrix} - \frac{1}{7}r_2 \\ &= \begin{bmatrix} 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

The pivot columns of A form a basis of $C(A)$ so $\begin{bmatrix} 1 \\ 2 \end{bmatrix}, \begin{bmatrix} 4 \\ 1 \end{bmatrix}$ form a basis of $C(A)$, so $C(A)$ is 2-dimensional. The rows of $\text{rref}(A)$ and the pivot rows of A form a basis of $C(A^T)$ (the row space), so $\begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$ or $\begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$ form a basis of $C(A^T)$. We see that $C(A^T)$ is 2-dimensional. Note that $\text{rank}(A) = \dim(C(A)) = \dim(C(A^T))$. Now,

the nullspace of A is found by solving $\text{rref}(A)\mathbf{x} = 0$. We find that a basis of $N(A)$ is $\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}$, and so the nullspace is 1-dimensional. Finally, A has full row rank, so the left nullspace is 0-dimensional.

(b) First we find $\text{rref}(A)$.

$$\begin{aligned}
 \left[\begin{array}{cccc} 1 & 3 & 2 & 4 \\ 2 & 6 & 3 & 4 \\ 1 & 3 & 3 & 8 \end{array} \right] r_2 - 2r_1 &= \left[\begin{array}{cccc} 1 & 3 & 2 & 4 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & 1 & 4 \end{array} \right] r_1 + 2r_2 \\
 &= \left[\begin{array}{cccc} 1 & 3 & 0 & -4 \\ 0 & 0 & -1 & -4 \\ 0 & 0 & 0 & 0 \end{array} \right] -r_2 \\
 &= \left[\begin{array}{cccc} 1 & 3 & 0 & -4 \\ 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 \end{array} \right].
 \end{aligned}$$

We see that $C(A)$ is 2-dimensional and a basis of $C(A)$ is $\begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \\ 3 \end{bmatrix}$.
 $C(A^T)$ is 2-dimensional and a basis of $C(A^T)$ is $\begin{bmatrix} 1 \\ 3 \\ 0 \\ -4 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 4 \end{bmatrix}$ or $\begin{bmatrix} 1 \\ 3 \\ 1 \\ 4 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 2 \\ 4 \end{bmatrix}$,

$\begin{bmatrix} 2 \\ 6 \\ 3 \\ 4 \end{bmatrix}$. The nullspace is 2-dimensional and a basis of $N(A)$ is $\begin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix}$,
 $\begin{bmatrix} 4 \\ 0 \\ -4 \\ 1 \end{bmatrix}$. The left nullspace is 1-dimensional and a basis of $N(A^T)$ is $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

□

2. Find the dimension of each of the four fundamental subspaces for the following matrices

- A is a 5×20 matrix and $\text{rank}(A)=3$.
- A is a 4000×100 matrix and $\text{rank}(A) = 15$.

Solution.

- Since $\text{rank}(A) = 3$, the dimension of the column space and row space is 3. By the rank-nullity theorem, the dimension of the nullspace is $20 - 3 = 17$, and the dimension of the left nullspace is $5 - 3 = 2$.

(b) Since $\text{rank}(A) = 15$, the dimension of the column space and row space is 15. By the rank-nullity theorem, the dimension of the nullspace is $100 - 15 = 85$, and the dimension of the left nullspace is $4000 - 15 = 3985$.

□

3. Prove that if $\text{rank}(A) = r$, then A is the sum of r rank 1 matrices.

Solution.

Since A is a rank r matrix, we can row reduce A using a series of matrices, so $A = CR$ where $R = \text{rref}(A)$. Recall that we can compute the matrix-matrix product of an $m \times n$ matrix A and an $n \times k$ matrix B by summing up n rank 1 matrices. That is,

$$AB = [\mathbf{a}_1 \ \cdots \ \mathbf{a}_n] \begin{bmatrix} \mathbf{b}_1^T \\ \vdots \\ \mathbf{b}_n^T \end{bmatrix} = \mathbf{a}_1 \mathbf{b}_1^T + \cdots + \mathbf{a}_n \mathbf{b}_n^T.$$

Now, since $\text{rank}(A) = r$, A has $m - r$ rows of zeros. Then we have

$$A = CR = [\mathbf{c}_1 \ \cdots \ \mathbf{c}_n] \begin{bmatrix} \mathbf{v}_1^T \\ \vdots \\ \mathbf{v}_r^T \\ \mathbf{0}^T \\ \vdots \\ \mathbf{0}^T \end{bmatrix} = \mathbf{c}_1 \mathbf{v}_1^T + \cdots + \mathbf{c}_r \mathbf{v}_r^T$$

□

4. Let

$$\begin{aligned} a_1 &= (1, -1) & b_1 &= (1, 0) \\ a_2 &= (2, -1) & b_2 &= (0, 1) \\ a_3 &= (-3, 2) & b_3 &= (1, 1). \end{aligned}$$

Is there a linear transformation from \mathbb{R}^2 into \mathbb{R}^2 so that $Ta_i = b_i$ for $i = 1, 2, 3$? If so, find T .

Solution.

We want to find a 2×2 matrix T so that $Ta_i = b_i$. We have

$$\begin{aligned} t_{11} - t_{12} &= 1 \\ t_{21} - t_{22} &= 0 \\ 2t_{11} - t_{12} &= 0 \\ 2t_{21} - t_{22} &= 1 \end{aligned}$$

so $t_{11} = -1$, $t_{12} = -2$, $t_{21} = 1$, and $t_{22} = 1$. Then

$$T = \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix}$$

but

$$\begin{aligned} Ta_3 &= \begin{bmatrix} -1 & -2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} -3 \\ 2 \end{bmatrix} \\ &= \begin{bmatrix} -1 \\ -1 \end{bmatrix} \\ &\neq \begin{bmatrix} 1 \\ 1 \end{bmatrix} = b_3. \end{aligned}$$

We see that we have an over-determined system since we have 6 equations for 4 variables. Notice that $a_3 = -a_1 - a_2$. Then

$$T(a_3) = T(-a_1 - a_2) = -T(a_1) - T(a_2) = -(1, 0) - (0, 1) = (-1, -1) \neq (1, 1) = b_3$$

so we cannot find a linear transformation from \mathbb{R}^2 to \mathbb{R}^2 so that $Ta_i = b_i$.

□

5. Prove that the following are linear transformations or provide an example that shows that it is not a linear transformation. If it is a linear transformation, describe the space the transformation maps to, and describe the vectors in the nullspace.

- (a) Let V be the vector space \mathbb{R}^2 . $T(x_1, x_2) = (x_2, x_1)$.
- (b) Let V be the vector space \mathbb{R}^2 . $T(x_1, x_2) = (\cos(x_1), x_2)$.
- (c) Let V be the vector space \mathbb{R}^n , A an $m \times n$ matrix and \mathbf{b} an $m \times 1$ column vector. $T(\mathbf{x}) = A\mathbf{x} + \mathbf{b}$.
- (d) Let V be the vector space of $n \times n$ real matrices and B a fixed $n \times n$ matrix. $T(A) = AB - BA$.
- (e) Let V be the vector space of real continuous functions. $(Tf)(x) = \int_a^x f(t) dt$.
- (f) Let V be the vector space \mathbb{R}^n . $T(\mathbf{v}) = \|\mathbf{v}\|$.
- (g) Let V be the vector space of n -degree polynomials. $(Tf)(x) = \frac{d^2}{dx^2} f(x)$.

Solution.

(a) Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^2$ and $a \in \mathbb{R}$. Then

$$\begin{aligned}
T(a\mathbf{v} + \mathbf{w}) &= T(av_1 + w_1, av_2 + w_2) \\
&= (av_2 + w_2, av_1 + w_1) \\
&= (av_2, v_1) + (w_2, w_1) \\
&= a(v_2, v_1) + (w_2, w_1) \\
&= aT\mathbf{v} + T\mathbf{w}
\end{aligned}$$

and so we see that T is indeed a linear transformation. T produces 2-tuples, so T maps to \mathbb{R}^2 . The nullspace of T is the collection of \mathbf{x} so that $T(x_1, x_2) = (0, 0)$. We see that $T(x_1, x_2) = (x_2, x_1) = (0, 0)$, so the nullspace of T is just $\mathbf{0}$.

(b) T is not a linear transformation. Consider $(0, 1)$ and $(\pi, 1)$.

$$T(0 + \pi, 1 + 1) = (\cos(0 + \pi), 2) = (-1, 2)$$

but $T(0, 1) = (1, 1)$ and $T(\pi, 1) = (-1, 1)$. We see that

$$T(0 + \pi, 1 + 1) \neq T(0, 1) + T(\pi, 1).$$

(c) Not a linear transformation if $\mathbf{b} \neq \mathbf{0}$. Let $\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$ and $a \in \mathbb{R}$. Then

$$\begin{aligned}
T(a\mathbf{v} + \mathbf{w}) &= A(a\mathbf{v} + \mathbf{w}) + \mathbf{b} \\
&= aA\mathbf{v} + A\mathbf{w} + \mathbf{b} \\
&= aA\mathbf{v} + \mathbf{b} + A\mathbf{w} + \mathbf{b} - \mathbf{b} \\
&= aT(\mathbf{v}) + T(\mathbf{w}) - \mathbf{b}
\end{aligned}$$

(d) Let A and C be $n \times n$ real matrices and $c \in \mathbb{R}$. Then

$$\begin{aligned}
T(cA + C) &= (cA + C)B - B(cA + C) \\
&= cAB + CB - cBA - BC \\
&= c(AB - BA) + CB - BC \\
&= cT(A) + T(B)
\end{aligned}$$

and so T is a linear transformation. T produces $n \times n$ matrices so T maps to the set of $n \times n$ matrices. For $T(A) = 0$, we see that $AB = BA$, so the nullspace of T is the collection of matrices that commute with B .

(e) Let f and g be real continuous functions and $c \in \mathbb{R}$. Using what we

know from calculus, we see that

$$\begin{aligned}
(T(cf + g))(x) &= \int_a^x cf(t) + g(t) dt \\
&= \int_a^x cf(t) dt + \int_a^x g(t) dt \\
&= c \int_a^x f(t) dt + \int_a^x g(t) dt \\
&= c(Tf)(x) + (Tg)(x)
\end{aligned}$$

so T is a linear transformation. T produces a continuous function, so T maps to the space of real continuous functions. Let $F(x)$ be the anti-derivative of $f(x)$. Then

$$\begin{aligned}
(Tf)(x) &= \int_a^x f(t) dt \\
&= F(x) - F(a)
\end{aligned}$$

so for $(Tf)(x) = 0$, we need $F(x) = F(a)$ for all x . Then, $F(x)$ is a constant function. Now, $f(x) = F'(x) = 0$ since F is constant. Therefore, the nullspace of T only contains the zero function.

(f) Not a linear transformation. Consider $\mathbf{v} = (1, 1, \dots, 1)$ and $\mathbf{w} = (1, 0, \dots, 0)$. Then

$$\begin{aligned}
T(\mathbf{v} + \mathbf{w}) &= T((2, 1, \dots, 1)) \\
&= \|(2, 1, \dots, 1)\| \\
&= \sqrt{4 + \sum_{i=2}^n 1} \\
&= \sqrt{3 + n}
\end{aligned}$$

but $T(\mathbf{v}) = \sqrt{n}$ and $T(\mathbf{w}) = 1$. We see that $T(\mathbf{v} + \mathbf{w}) \neq T(\mathbf{v}) + T(\mathbf{w})$.

(g) Let f and g be n -degree polynomials and $a \in \mathbb{R}$. Using what we know from calculus, we see that

$$\begin{aligned}
(T(af + g))(x) &= \frac{d^2}{dx^2}(af + g) \\
&= \frac{d^2}{dx^2}af + \frac{d^2}{dx^2}g \\
&= a \frac{d^2}{dx^2}f + \frac{d^2}{dx^2}g \\
&= a(Tf)(x) + (Tg)(x)
\end{aligned}$$

and so T is a linear transformation. Next, to determine the nullspace of T , we want to find f so that $(Tf)(x) = 0$. We see that

$$\begin{aligned}(Tf)(x) &= 0 \\ \frac{d^2}{dx^2}f(x) &= 0 \\ \frac{d}{dx}f(x) &= a \\ f(x) &= ax + b\end{aligned}$$

and so functions of the form $f(x) = ax + b$ are in the nullspace of T . Finally, an n -degree polynomial may be written as $\sum_{i=0}^n c_i x^i$. We see that

$$\begin{aligned}(T \sum_{i=0}^n c_i x^i)(x) &= \frac{d^2}{dx^2} \sum_{i=0}^n c_i x^i \\ &= \frac{d}{dx} \sum_{i=1}^n c_i i x^{i-1} \\ &= \sum_{i=2}^n c_i i(i-1) x^{i-2} \\ &= \sum_{j=0}^{n-2} c_{j+2} (j+2)(j+1) x^j\end{aligned}$$

and so T maps to the space of $(n-2)$ -degree polynomials.

□