MAT 22A Problem Set 8 Solutions
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2 1 2
1. Let S = span 21,12],|-1| |. Find a basis for S*+ and determine
-1 2 2
0 1 1
the dimension of S*.
Solution.
1 -1 0
2 1 2
Let A be the matrix whose columns are the vectors 21(,121|,|-1
—1 2 2
0 1 1

Then C(A4) = S, so St =C(A)+ =N(AT). That is St is the left nullspace
of A. Now, we find rref(A).
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Now, we solve xTR = 0. We see that 1 = x93 = x5 = 0 and x4, 5
0 0
0 0
are free variables. Then, 0], (0 forms a basis of St, so St is
1 0
0 1
2-dimensional. ]



2. Find the nullspace of an n x n invertible matrix A and determine the
dimension of N(A). Explain your reasoning.

Solution.

There is a number of ways to approach this problem. Since A is invert-
ible, A~! exists, so Ax = 0 only has the solution x = 0. Then N(A) is
0-dimensional.

Another line of reasoning is as follows. Since A is invertible, the columns of
A of linearly independent, so rank(A) = n. Then C(A) is n-dimensional.
By the rank-nullity theorem, we find that nullity(A) = n—rank(A) =
n—n=0.

O

3. Find the pseudoinverse of the following matrix, and compute the product
of the pseudoinverse and given matrix.

1 -1 0
2 1 2
2 2 -1
-1 2 2
0 1 1



Solution.

First, we find rref(A).
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We see the 3 x 3 identity matrix, so we take




Now, we find B!,
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Now, if we try to compute B~'A, we see that is it not defined. But we
may compute AB~!, and we find
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Alternatively, we may compute the left pseudoinverse of A by computing
L=(ATA)~1AT.

O
. Let S be a subspace of the vector space R”. Prove that R"* = S & St.

That is, for any v € R”,
v=s+t

where s € S and t € S+.

Solution.

Let vy,...,v be a basis of S. Let A be the matrix
A:[Vl vk].

Then C(A) = S, s0 S+ = N(AT). By the rank-nullity theorem, n =rank(AT)+
nullity(AT) = rank(A)+nullity(AT), so nullity(AT) = n — k. Then S+



is (n — k)-dimensional, so let vpy1,...,V, be a basis of S*. We know
C(A)aN(AT) =R", so S @ S+ = R™. We see that for any v € R",

v=s+t

wheres =c1vi+---+cpvp € Sand t = cpp1 Vi1 + -+ cpvn € St O



