

MAT 22A Problem Set 8 Solutions

1. Let $S = \text{span} \left(\begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -1 \\ 2 \\ 1 \end{bmatrix} \right)$. Find a basis for S^\perp and determine the dimension of S^\perp .

Solution.

Let A be the matrix whose columns are the vectors $\left\{ \begin{bmatrix} 1 \\ 2 \\ 2 \\ -1 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 2 \\ 2 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 2 \\ -1 \\ 2 \\ 1 \end{bmatrix} \right\}$.

Then $C(A) = S$, so $S^\perp = C(A)^\perp = N(A^T)$. That is S^\perp is the left nullspace of A . Now, we find $\text{rref}(A)$.

$$\begin{aligned}
 \left[\begin{array}{ccc|c} 1 & -1 & 0 & r_2 - 2r_1 \\ 2 & 1 & 2 & \\ 2 & 2 & -1 & r_3 - 2r_1 \\ -1 & 2 & 2 & r_4 + r_1 \\ 0 & 1 & 1 & \end{array} \right] &= \left[\begin{array}{ccc|c} 1 & -1 & 0 & r_1 - r_2 \\ 0 & -1 & 2 & \\ 0 & 4 & -1 & r_3 + 4r_2 \\ 0 & 1 & 2 & r_4 + r_2 \\ 0 & 1 & 1 & r_5 + r_2 \end{array} \right] \\
 &= \left[\begin{array}{ccc|c} 1 & 0 & -2 & \\ 0 & -1 & 2 & -r_2 \\ 0 & 0 & -7 & -\frac{1}{7}r_3 \\ 0 & 0 & 4 & \frac{1}{4}r_4 \\ 0 & 0 & 3 & \frac{1}{3}r_5 \end{array} \right] \\
 &= \left[\begin{array}{ccc|c} 1 & 0 & -2 & r_1 + 2r_3 \\ 0 & 1 & -2 & r_2 + 2r_3 \\ 0 & 0 & 1 & r_4 - r_3 \\ 0 & 0 & 1 & r_5 - r_3 \end{array} \right] \\
 &= \left[\begin{array}{ccc|c} 1 & 0 & 0 & \\ 0 & 1 & 0 & \\ 0 & 0 & 1 & \\ 0 & 0 & 0 & \\ 0 & 0 & 0 & \end{array} \right].
 \end{aligned}$$

Now, we solve $\mathbf{x}^T R = \mathbf{0}$. We see that $x_1 = x_2 = x_3 = 0$ and x_4, x_5

are free variables. Then, $\left\{ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \right\}$ forms a basis of S^\perp , so S^\perp is 2-dimensional. \square

2. Find the nullspace of an $n \times n$ invertible matrix A and determine the dimension of $N(A)$. Explain your reasoning.

Solution.

There is a number of ways to approach this problem. Since A is invertible, A^{-1} exists, so $A\mathbf{x} = \mathbf{0}$ only has the solution $\mathbf{x} = \mathbf{0}$. Then $N(A)$ is 0-dimensional.

Another line of reasoning is as follows. Since A is invertible, the columns of A are linearly independent, so $\text{rank}(A) = n$. Then $C(A)$ is n -dimensional. By the rank-nullity theorem, we find that $\text{nullity}(A) = n - \text{rank}(A) = n - n = 0$.

□

3. Find the pseudoinverse of the following matrix, and compute the product of the pseudoinverse and given matrix.

$$\begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \\ 0 & 1 & 1 \end{bmatrix}$$

Solution.

First, we find $\text{rref}(A)$.

$$\begin{aligned}
 \left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \\ 0 & 1 & 1 \end{array} \right] r_2 - 2r_1 &= \left[\begin{array}{ccc} 1 & -1 & 0 \\ 0 & 3 & 2 \\ 0 & 4 & -1 \\ 0 & 1 & 2 \\ 0 & 1 & 1 \end{array} \right] r_1 + \frac{1}{3}r_2 \\
 &= \left[\begin{array}{ccc} 1 & 0 & \frac{2}{3} \\ 0 & 3 & 2 \\ 0 & 0 & -\frac{11}{3} \\ 0 & 0 & \frac{4}{3} \\ 0 & 0 & \frac{1}{3} \end{array} \right] - \frac{3}{11}r_3 \\
 &= \left[\begin{array}{ccc} 1 & 0 & \frac{2}{3} \\ 0 & 3 & 2 \\ 0 & 0 & 1 \\ 0 & 0 & \frac{4}{3} \\ 0 & 0 & \frac{1}{3} \end{array} \right] r_1 - \frac{2}{3}r_3 \\
 &= \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right] \frac{1}{3}r_2 \\
 &= \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right].
 \end{aligned}$$

We see the 3×3 identity matrix, so we take

$$B = \left[\begin{array}{ccc} 1 & -1 & 0 \\ 2 & 1 & 2 \\ 2 & 2 & -1 \end{array} \right].$$

Now, we find B^{-1} ,

$$\begin{aligned}
\left[\begin{array}{ccc|ccc} 1 & -1 & 0 & 1 & 0 & 0 \\ 2 & 1 & 2 & 0 & 1 & 0 \\ 2 & 2 & -1 & 0 & 0 & 1 \end{array} \right] r_2 - 2r_1 &= \left[\begin{array}{ccc|ccc} 1 & -1 & 0 & 1 & 0 & 0 \\ 0 & 3 & 2 & -2 & 1 & 0 \\ 0 & 4 & -1 & -2 & 0 & 1 \end{array} \right] r_1 + \frac{1}{3}r_2 \\
&= \left[\begin{array}{ccc|ccc} 1 & 0 & \frac{2}{3} & \frac{1}{3} & \frac{1}{3} & 0 \\ 0 & 3 & 2 & -2 & 1 & 0 \\ 0 & 0 & -\frac{11}{3} & \frac{2}{3} & -\frac{4}{3} & 1 \end{array} \right] r_2 + \frac{2}{11}r_3 \\
&= \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{15}{33} & \frac{3}{33} & \frac{2}{11} \\ 0 & 3 & 0 & -\frac{54}{33} & \frac{9}{33} & \frac{6}{11} \\ 0 & 0 & -\frac{11}{3} & \frac{2}{3} & -\frac{4}{3} & 1 \end{array} \right] - \frac{1}{3}r_2 \\
&= \left[\begin{array}{ccc|ccc} 1 & 0 & 0 & \frac{15}{33} & \frac{3}{33} & \frac{2}{11} \\ 0 & 1 & 0 & -\frac{18}{33} & \frac{3}{33} & \frac{2}{11} \\ 0 & 0 & 1 & -\frac{11}{33} & \frac{4}{33} & -\frac{3}{11} \end{array} \right]
\end{aligned}$$

so

$$B^{-1} = \begin{bmatrix} \frac{15}{33} & \frac{3}{33} & \frac{2}{11} \\ -\frac{18}{33} & \frac{1}{11} & \frac{2}{11} \\ -\frac{2}{11} & \frac{4}{11} & -\frac{3}{11} \end{bmatrix}$$

Now, if we try to compute $B^{-1}A$, we see that is it not defined. But we may compute AB^{-1} , and we find

$$AB^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{15}{33} & \frac{3}{33} & \frac{2}{11} \\ -\frac{18}{33} & \frac{1}{11} & \frac{2}{11} \\ -\frac{2}{11} & \frac{4}{11} & -\frac{3}{11} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ -\frac{63}{33} & \frac{27}{33} & -\frac{12}{33} \\ -\frac{24}{33} & \frac{15}{33} & -\frac{3}{33} \end{bmatrix}$$

Alternatively, we may compute the left pseudoinverse of A by computing $L = (A^T A)^{-1} A^T$.

□

4. Let S be a subspace of the vector space \mathbb{R}^n . Prove that $\mathbb{R}^n = S \oplus S^\perp$. That is, for any $\mathbf{v} \in \mathbb{R}^n$,

$$\mathbf{v} = \mathbf{s} + \mathbf{t}$$

where $\mathbf{s} \in S$ and $\mathbf{t} \in S^\perp$.

Solution.

Let $\mathbf{v}_1, \dots, \mathbf{v}_k$ be a basis of S . Let A be the matrix

$$A = [\mathbf{v}_1 \ \cdots \ \mathbf{v}_k].$$

Then $C(A) = S$, so $S^\perp = N(A^T)$. By the rank-nullity theorem, $n = \text{rank}(A^T) + \text{nullity}(A^T) = \text{rank}(A) + \text{nullity}(A^T)$, so $\text{nullity}(A^T) = n - k$. Then S^\perp

is $(n - k)$ -dimensional, so let $\mathbf{v}_{k+1}, \dots, \mathbf{v}_n$ be a basis of S^\perp . We know $C(A) \oplus N(A^T) = \mathbb{R}^n$, so $S \oplus S^\perp = \mathbb{R}^n$. We see that for any $\mathbf{v} \in \mathbb{R}^n$,

$$\mathbf{v} = \mathbf{s} + \mathbf{t}$$

where $\mathbf{s} = c_1\mathbf{v}_1 + \dots + c_k\mathbf{v}_k \in S$ and $\mathbf{t} = c_{k+1}\mathbf{v}_{k+1} + \dots + c_n\mathbf{v}_n \in S^\perp$. \square