

MAT 22A Problem Set 9 Solutions

1. Find the projection of matrix P and projection \mathbf{p} of $\mathbf{b} = \begin{bmatrix} 5 \\ 0 \\ 0 \\ 0 \end{bmatrix}$ onto the subspace spanned by $\left\{ \begin{bmatrix} 1 \\ 0 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 2 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 2 \\ 1 \end{bmatrix} \right\}$. What is the length of the error vector?

Solution.

Let

$$A = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ -1 & 2 & 2 \\ 1 & 0 & 1 \end{bmatrix}.$$

The projection matrix onto the subspace is $P = A(A^T A)^{-1} A^T$. Computing P , we find that

$$P = \begin{bmatrix} \frac{2}{5} & -\frac{1}{5} & -\frac{1}{5} & \frac{2}{5} \\ -\frac{1}{5} & \frac{14}{15} & -\frac{1}{15} & \frac{2}{15} \\ -\frac{1}{5} & -\frac{1}{15} & \frac{14}{15} & \frac{2}{15} \\ \frac{2}{5} & \frac{2}{15} & \frac{2}{15} & \frac{14}{15} \end{bmatrix}$$

and so

$$\mathbf{p} = \begin{bmatrix} \frac{2}{5} & -\frac{1}{5} & -\frac{1}{5} & \frac{2}{5} \\ -\frac{1}{5} & \frac{14}{15} & -\frac{1}{15} & \frac{2}{15} \\ -\frac{1}{5} & -\frac{1}{15} & \frac{14}{15} & \frac{2}{15} \\ \frac{2}{5} & \frac{2}{15} & \frac{2}{15} & \frac{14}{15} \end{bmatrix} \begin{bmatrix} 5 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ -1 \\ -1 \\ 2 \end{bmatrix}.$$

The length of the error vector is

$$\|\mathbf{e}\| = \|\mathbf{b} - A\hat{\mathbf{x}}\| = 3.87298.$$

□

2. Prove the following properties of the projection matrix P :

- (a) $P^2 = P$
- (b) $P^T = P$

Solution.

(a) We know that $P = A(A^T A)^{-1} A^T$, so

$$\begin{aligned} P^2 &= A(A^T A)^{-1} A^T A(A^T A)^{-1} A^T \\ &= A(A^T A)^{-1} (A^T A) (A^T A)^{-1} A^T \\ &= A(A^T A)^{-1} A^T \\ &= P \end{aligned}$$

(b) We have

$$\begin{aligned} P^T &= (A(A^T A)^{-1} A^T)^T \\ &= (A^T)^T ((A^T A)^{-1})^T A^T \\ &= A((A^T A)^{-1})^T A^T. \end{aligned}$$

Now, suppose B is an invertible matrix. Then

$$\begin{aligned} BB^{-1} &= I \\ (BB^{-1})^T &= I \\ (B^{-1})^T B^T &= I \end{aligned}$$

so $(B^T)^{-1} = (B^{-1})^T$. Then $((A^T A)^{-1})^T = ((A^T A)^T)^{-1}$. Now,

$$\begin{aligned} A((A^T A)^{-1})^T A^T &= A((A^T A)^T)^{-1} A^T \\ &= A(A^T A)^{-1} A^T \\ &= P. \end{aligned}$$

□

3. Let S_1 and S_2 be subspaces of \mathbb{R}^4 . S_1 is spanned by $\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right\}$ and S_2

spanned by $\left\{ \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix} \right\}$. Show that S_1 and S_2 are orthogonal subspaces. Find

the orthogonal complement of $S_1 + S_2 = \text{span} \left(\left\{ \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix} \right\} \right)$.

Let P_1 be the projection matrix onto S_1 , P_2 the projection matrix onto S_2 and P_3 the projection matrix onto $(S_1 + S_2)^\perp$. Show that $P_1 + P_2 + P_3 = I$.

Solution.

Let $\mathbf{x}_1 \in S_1$ and $\mathbf{x}_2 \in S_2$. Since the two given vectors that span S_1 are linearly independent, they form a basis of S_1 , so we can find c_1 and c_2 so

that

$$\mathbf{x}_1 = c_1 \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

and we may find c_3 so that

$$\mathbf{x}_2 = c_3 \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix}$$

Now, we see that

$$\begin{aligned} \mathbf{x}_2^T \mathbf{x}_1 &= c_3 [0 \ 0 \ 1 \ 2] \left(c_1 \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} \right) \\ &= c_3 c_1 (0) + c_3 c_2 (0) \\ &= 0. \end{aligned}$$

Thus, we see that S_1 and S_2 are orthogonal subspaces.

Let

$$A = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix}.$$

Since $C(A) = S_1 + S_2$, we see that $(S_1 + S_2)^\perp = (C(A))^\perp = N(A^T)$. To determine $N(A^T)$, we solve

$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 2 \end{bmatrix} = \mathbf{0}.$$

We see that $x_1 = x_2$, $x_1 = -x_2$, and $x_3 = -2x_4$, so $x_1 = x_2 = 0$. Then,

$\mathbf{x} = x_4 \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix}$. Thus, $(S_1 + S_2)^\perp = \text{span} \left(\begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix} \right)$. Now, we compute

P_1, P_2 , and P_3 .

$$\begin{aligned}
P_1 &= \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \right)^{-1} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \\
&= \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}^{-1} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \\
&= \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix} \\
&= \begin{bmatrix} 1 & 1 \\ -1 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & 0 \end{bmatrix} \\
&= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.
\end{aligned}$$

$$\begin{aligned}
P_2 &= \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix} \left(\begin{bmatrix} 0 & 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 & 0 & 1 & 2 \end{bmatrix} \\
&= \frac{1}{5} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 2 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 & 2 \end{bmatrix} \\
&= \frac{1}{5} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix}.
\end{aligned}$$

$$\begin{aligned}
P_3 &= \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix} \left(\begin{bmatrix} 0 & 0 & -2 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix} \right)^{-1} \begin{bmatrix} 0 & 0 & -2 & 1 \end{bmatrix} \\
&= \frac{1}{5} \begin{bmatrix} 0 \\ 0 \\ -2 \\ 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & -2 & 1 \end{bmatrix} \\
&= \frac{1}{5} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & -2 & 1 \end{bmatrix}.
\end{aligned}$$

Now,

$$P_1 + P_2 + P_3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} + \frac{1}{5} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 2 & 4 \end{bmatrix} + \frac{1}{5} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & -2 \\ 0 & 0 & -2 & 1 \end{bmatrix} = I.$$

□

4. Consider the following data points: $(-2, -6)$, $(-1, 0)$, $(0, 0)$, $(1, 0)$, and $(2, 6)$. Interpolate the data using the following polynomials:

- (a) Line
- (b) Parabola
- (c) Cubic

Which is the best fit to the data? Why?

Solution.

(a) We want a line of the form $c_0 + c_1x = y$, so we get the system

$$\begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \mathbf{c} = \begin{bmatrix} -6 \\ 0 \\ 0 \\ 0 \\ 6 \end{bmatrix}.$$

Multiplying the by transpose of the LHS and multiplying the inverse of the resulting matrix, we find that

$$\mathbf{c} = \begin{bmatrix} 0 \\ \frac{24}{10} \end{bmatrix}.$$

The length of the error vector is

$$\|\mathbf{e}\| = \left\| \begin{bmatrix} -6 \\ 0 \\ 0 \\ 0 \\ 6 \end{bmatrix} - \begin{bmatrix} 1 & -2 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 0 \\ \frac{24}{10} \end{bmatrix} \right\| = 3.7947.$$

(b) We want a parabola of the form $c_0 + c_1x + c_2x^2 = y$, so we get the system

$$\begin{bmatrix} 1 & -2 & 4 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \mathbf{c} = \begin{bmatrix} -6 \\ 0 \\ 0 \\ 0 \\ 6 \end{bmatrix}.$$

Multiplying the by transpose of the LHS and multiplying the inverse of the resulting matrix, we find that

$$\mathbf{c} = \begin{bmatrix} 0 \\ \frac{24}{10} \\ 0 \end{bmatrix}$$

The length of the error vector is

$$\|\mathbf{e}\| = \left\| \begin{bmatrix} -6 \\ 0 \\ 0 \\ 0 \\ 6 \end{bmatrix} - \begin{bmatrix} 1 & -2 & 4 \\ 1 & -1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 0 \\ \frac{24}{10} \\ 0 \end{bmatrix} \right\| = 3.7947.$$

(c) We want a parabola of the form $c_1 + c_1x + c_2x^2 + c_3x^3 = y$, so we get the system

$$\begin{bmatrix} 1 & -2 & 4 & -8 \\ 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \end{bmatrix} \mathbf{c} = \begin{bmatrix} -6 \\ 0 \\ 0 \\ 0 \\ 6 \end{bmatrix}.$$

Multiplying the by transpose of the LHS and multiplying the inverse of the resulting matrix, we find that

$$\mathbf{c} = \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix}$$

The length of the error vector is

$$\|\mathbf{e}\| = \left\| \begin{bmatrix} -6 \\ 0 \\ 0 \\ 0 \\ 6 \end{bmatrix} - \begin{bmatrix} 1 & -2 & 4 & -8 \\ 1 & -1 & 1 & -1 \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \end{bmatrix} \begin{bmatrix} 0 \\ -1 \\ 0 \\ 1 \end{bmatrix} \right\| = 0.$$

Of the line, parabola, and cubic function, we see that the cubic function has the smallest error, so it is likely the best choice to fit the data. \square