§ 2.8 The Existence and Uniqueness Theorem

Theorem Existence and Uniqueness

If f and $\frac{df}{dy}$ are continuous in a rectangle $R: |t| \leq a$, $|y| \leq b$, then there is some interval $|t| \leq h \leq a$ in which there exists a unique solution $y = \phi(t)$ of the initial value problem

$$y' = f(t, y), \quad y(0) = 0.$$

Note If we have the IVP $y' = f(t, y)$, $y(t_0) = y_0$, we can make a change of variables so that the initial point (t_0, y_0) is the origin.
Now, we will examine elements of the existence/uniqueness theorem.

Suppose \(y = \phi(t) \) satisfies the IVP. Then \(f(t, y) = f(t, \phi(t)) \), so \(f \) only depends on \(t \). Now,

\[
y' = f(t, y) = f(t, \phi(t))
\]

\[
\int_{0}^{t} y' \, dt = \int_{0}^{t} f(s, \phi(s)) \, ds
\]

\[
y(t) - y(0) = \int_{0}^{t} f(s, \phi(s)) \, ds
\]

\[
y(t) = \int_{0}^{t} f(s, \phi(s)) \, ds.
\]

Thus expression for \(y(t) \) involves the
integral of an unknown function Φ and is called an integral equation.

The integral equation and IVP are equivalent.

Picard's iteration method (method of successive approximations)

- Method for showing the integral equation has a unique solution

We generate a sequence of functions $\Phi_n(t)$ as follows:

1. Choose Φ_0. Simplest choice is $\Phi_0(t) = 0$.
2. We get Φ_n by using Φ_{n-1} in the integral equation.
\[\varphi_i(t) = \int_0^t f(s, \varphi_0(s)) \, ds \]

3. We get \(\varphi_2 \) by using \(\varphi_1 \)
\[\varphi_2(t) = \int_0^t f(s, \varphi_1(s)) \, ds \]
and so on. In general,
\[\varphi_{n+1}(t) = \int_0^t f(s, \varphi_n(s)) \, ds \].

We now have a sequence of functions. Each function in the sequence satisfies the IC, but may not satisfy the DE. If at some point, say \(n = k \), we have \(\varphi_{k+1}(t) = \varphi_k(t) \), then \(\varphi_k \) is a solution of the integral
equation.

To prove the Existence/Uniqueness theorem we need to know:

1. Do all members of \(\{ f_n \} \) exist?
2. Does \(\{ f_n \} \) converge?
3. What are the properties of the limit function?
4. Is this the only solution?

1. Do all members of \(\{ f_n \} \) exist?

\(f \) and \(\frac{df}{dy} \) are continuous in the rectangle \(R: |x| \leq a, |y| \leq b \) so the
danger is that \(y = \Phi_k(t) \) may be outside of \(R \). We need to restrict \(t \) to a smaller interval than \(|t| \leq a \).

It is continuous on a closed bounded region so there is constant \(M > 0 \) such that
\[
|f(t, y)| \leq M \text{ for } (t, y) \in R.
\]

Now,
\[
\Phi'_{k+1} = f(t, \Phi_k) \leq M
\]
so the point \((t, \Phi_{k+1}(t)) \in R\) as long as \(|t| \leq \frac{b}{M}\).
Choose \(h = \min \{ a, \frac{b}{M} \} \).

2. Does \(\varphi_n \) converge?

We see that

\[
\varphi_n(t) = \varphi_1 + (\varphi_2 - \varphi_1) + \ldots + (\varphi_n - \varphi_{n-1})
\]
is the partial sum of
\[\Phi_1 + \sum_{k=1}^{\infty} (\Phi_{k+1} - \Phi_k). \]

Therefore, if the series converges, then the sequence \(\{\Phi_n\} \) converges and we let
\[\Phi(k) = \lim_{n \to \infty} \Phi_n(k). \]

3. What are the properties of the limit function?

We want to know if \(\Phi \) is continuous. If each \(\Phi_n \) is continuous and \(\{\Phi_n\} \) "converges uniformly" then \(\Phi \) is continuous.
\[\varphi_{n+1}(t) = \int_0^t f(s, \varphi_n(s)) \, ds \]

\[\varphi(t) = \lim_{n \to \infty} \int_0^t f(s, \varphi_n(s)) \, ds \]

\[= \int_0^t \lim_{n \to \infty} f(s, \varphi_n(s)) \, ds \]

\[= \int_0^t f(s, \varphi(s)) \, ds \]

Since \(\varphi_n \) converges uniformly.
Since \(f \) is continuous.

4. Is this the only solution?

Suppose \(y_1 = \varphi(t) \) and \(y_2 = \psi(t) \) are both solutions. Then

\[|y_1 - y_2| = |\varphi(t) - \psi(t)| \]
\[
\begin{align*}
&= \left| \int_0^t f(s, \varphi(s)) \, ds - \int_0^t f(s, \psi(s)) \, ds \right| \\
&= \left| \int_0^t f(s, \varphi(s)) - f(s, \psi(s)) \, ds \right| \\
&\leq \int_0^t |f(s, \varphi(s)) - f(s, \psi(s))| \, ds \\
&\leq \int_0^t \ell |\varphi(s) - \psi(s)| \, ds
\end{align*}
\]

for some constant \(\ell \) (Lipschitz constant)

hence

\[
A(t) = \int_0^t |\varphi(s) - \psi(s)| \, ds
\]

Then

\[
A(0) = 0
\]

\[
A(t) \geq 0 \quad \text{for} \quad t \geq 0
\]

and

\[
A'(t) = |\varphi(t) - \psi(t)|
\]
Now,

$$|\phi(t) - \psi(t)| \leq L \int_0^t |\phi(s) - \psi(s)| ds$$

$$A'(t) \leq LA(t)$$

$$A'(t) - LA(t) \leq 0.$$

Multiply by e^{-Lt}, we get

$$\frac{d}{dt} (e^{-Lt} A(t)) \leq 0$$

so

$$e^{-Lt} A(t) \leq 0.$$

Hence

$$A(t) \leq 0.$$

We now have that

$$A(0) = 0$$ and $$A(t) \geq 0$$ for $t \geq 0$.

AND

$A(t) \leq 0 \text{ for } t \geq 0$.

So $A(t) = 0 \text{ for } t \geq 0$.

Hence, $A'(t) = 0$

So

$|\psi(t) - \psi(t)| = 0$

i.e. $\psi(t) = \psi(t) \text{ for } t \geq 0$.
§ 2.9 First-Order Difference Equations

So far, we have considered continuous models but now we explore discrete models which lead to difference equations.

A first-order difference equation is of the form

\[y_{n+1} = f(n, y_n), \quad n = 0, 1, 2, \ldots \]

It is first-order since \(y_{n+1} \) only depends on \(y_n \).

The difference eqn is linear if \(f \) is a linear function of \(y_n \), otherwise it is nonlinear.

A solution is a sequence of numbers \(y_0, y_1, \ldots \) that satisfy the equation for
each n.

The initial condition $y_0 = a$, specifies the first term of the solution sequence.

Equilibrium Solutions

Suppose $y_{n+1} = f(y_n)$, $n = 0, 1, 2, \ldots$

where f depends only on y_n. Then

\[y_1 = f(y_0) \]

\[y_2 = f(y_1) = f(f(y_0)) \]

\[y_3 = f(y_2) = f(f(f(y_0))) = f^3(y_0) \]

and so

\[y_n = f^n(y_0) \]
We may want to know what happens to \(y_n \) as \(n \to \infty \). If \(y_n \) has the same value for all \(n \), \(y_n \) is called an equilibrium solution. Such a solution satisfies
\[
y_n = f(y_n).
\]

Linear Equations

Consider the difference equation
\[
y_{n+1} = gy_n + b, \quad n = 0, 1, 2, \ldots
\]

First, let's solve the equation in terms of the initial value \(y_0 \). We have
\[y_1 = s y_0 + b_0 \]
\[y_2 = s y_1 + b_1 = s(s y_0 + b_0) + b_1 = s^2 y_0 + s b_0 + b_1, \]
\[y_3 = s y_2 + b_2 \]
\[= s(s^2 y_0 + s b_0 + b_1) + b_2 = s^3 y_0 + s^2 b_0 + s b_1 + b_2 \]

and so
\[y_n = s^n y_0 + s^{n-1} b_0 + \ldots + s b_{n-2} + b_{n-1} \]
\[= s^n y_0 + \sum_{j=0}^{n-1} s^{n-1-j} b_j. \]

Suppose \(b_n = b \neq 0 \) for all \(n \), then
\[y_n = s^n y_0 + b \sum_{j=0}^{n-1} s^{n-1-j} \]
\[= s^n y_0 + b \frac{1 - s^n}{1-s} \]
\[= s^n (y_0 - \frac{b}{1-s}) + \frac{b}{1-s} \]

Now, let's determine the long-time behavior of \(y_n \).

1. \(|s| < 1 \) \(\implies \) \(y_n \to \frac{b}{1-s} \)

2. \(|s| > 1 \)

 a. \(y_0 = \frac{b}{1-s} \) \(\implies \) \(y_n = \frac{b}{1-s} \) for all \(n \)

 b. \(y_0 \neq \frac{b}{1-s} \) \(\implies \) no limit

3. \(s = -1 \) \(\implies \) no limit
4. $s = 1$, we need to go back to the difference equation

$$y_{n+1} = sy_n + b = y_n + b$$

$$\implies y_n \to \infty \text{ as } n \to \infty$$

Nonlinear Equations

Logistic difference equation

$$y_{n+1} = sy_n \left(1 - \frac{y_n}{K}\right)$$

or

$$u_{n+1} = su_n \left(1 - u_n\right)$$

where $u_n = \frac{y_n}{K}$.
Let's find equilibrium solutions

$$u_n = gu_n (1-u_n)$$

$$gu_n^2 + u_n (1-g) = 0$$

$$u_n (gu_n + 1-g) = 0$$

$$u_n = 0 \quad u_n = \frac{g-1}{g}$$

Cobweb/Stairstep diagram