Ch. 3 Second-Order Linear Differential Equations

§3.1 Homogeneous DEs with constant coefficients

Consider the 2nd-order DE of the form

$$\frac{d^2y}{dt^2} = f(t, y, \frac{dy}{dt})$$

which is linear if

$$f(t, y, \frac{dy}{dt}) = g(t) - p(t) \frac{dy}{dt} - q(t)y$$

where $g, p, \text{ and } q$ are given functions of t. Our general 2nd-order linear DE is

$$y'' + p(t)y' + q(t)y = g(t).$$

The initial value problem requires us to specify

$$y(t_0) = y_0 \quad \text{and} \quad y'(t_0) = y'_0.$$
We now specify an initial point \((t_0, y_0)\) and an initial slope \(y_0'\).

The second order equation is called \textbf{homogeneous} if \(g(t) = 0\) for all \(t\). Otherwise, it is called \textbf{nonhomogeneous}.

\textbf{Note:} Solving the nonhomogeneous problem requires solving the homogeneous problem first, so we examine the homogeneous case first.

Consider
\[
ay'' + by' + cy = 0
\]
where \(a\), \(b\) and \(c\) are given constants. We have already seen how to solve this DE!
Idea 1: Suppose \(y = e^{rt} \) is a solution to the DE. Then

\[
ay'' + by' + cy = 0
\]

\[
a(e^{rt})'' + b(e^{rt})' + ce^{rt} = 0
\]

\[
ar^2 e^{rt} + be^{rt} + ce^{rt} = 0
\]

\[
e^{rt}(ar^2 + br + c) = 0
\]

Now, \(e^{rt} \neq 0 \), so

\[
ar^2 + br + c = 0.
\]

This is called the characteristic equation for the DE. The characteristic equation has two roots \(r_1 \) and \(r_2 \) which may be real and distinct, real and
repeated, or complex conjugates depending on \(a, b,\) and \(c.\)

For now, let us assume \(r_1\) and \(r_2\) are distinct real roots. Then
\[
y_1 = e^{r_1 t} \quad \text{and} \quad y_2 = e^{r_2 t}
\]
both solve the DE.

\underline{Idea 2:} If \(y_1\) and \(y_2\) are solutions of the DE, then
\[
y = c_1 y_1 + c_2 y_2
\]
solves the DE.

\[
ay'' + by' + cy = a (c_1 y_1 + c_2 y_2)'' + b (c_1 y_1 + c_2 y_2)' + c (c_1 y_1 + c_2 y_2)
= ac_1 y_1'' + bc_1 y_1' + c c_1 y_1,
\]
\[
+ ac_2 y_2'' + bc_2 y_2' + c c_2 y_2
\]
\[y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} \]

\[= 0 \]

Since r_1 and r_2 are roots of $ax^2 + bx + c$.

The Initial Value Problem

We have our solution

\[y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} \]

and we can get a particular solution using the initial values

\[y(t_0) = y_0 \quad \text{and} \quad y'(t_0) = y'_0 \]

to determine c_1 and c_2.

\[y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t} \]

is called the **general solution**.
Ex Solve the IVP

\[4y'' - 8y' + 3y = 0 \, , \, y(0) = 2, \, y'(0) = \frac{1}{2} \]

First, the characteristic equation is

\[4r^2 - 8r + 3 = 0 \]
\[(2r - 1)(2r - 3) = 0 \]
\[r_1 = \frac{3}{2} \, \quad r_2 = \frac{1}{2} \]

Therefore, our general solution is

\[y = c_1 e^{\frac{3}{2}t} + c_2 e^{\frac{1}{2}t} \]

Now, we determine \(c_1 \) and \(c_2 \) using the ICs

\[2 = y(0) = c_1 + c_2 \]

so

\[c_1 = 2 - c_2 \]
Now,
\[y = (2 - c_2) e^{\frac{3}{2}t} + c_2 e^{\frac{1}{2}t} \]
and
\[y' = \frac{3}{2} (2 - c_2) e^{\frac{3}{2}t} + \frac{1}{2} c_2 e^{\frac{1}{2}t} \]
We have
\[\frac{1}{2} = y'(0) = \frac{3}{2} (2 - c_2) + \frac{1}{2} c_2 \]
\[1 = 3 (2 - c_2) + c_2 \]
\[-5 = -2 c_2 \]
\[c_2 = \frac{5}{2} \]
Then
\[c_1 = 2 - c_2 \]
\[= 2 - \frac{5}{2} \]
\[= -\frac{1}{2} \].
Thus,
\[y = -\frac{1}{2} e^{\frac{3}{2}t} + \frac{5}{2} e^{\frac{1}{2}t} \]

Long-time behavior

Our general solution is
\[y = c_1 e^{rt} + c_2 e^{nt} \]

What happens as \(t \to \infty \)?
§3.2 Solutions of Homogeneous Equations; Wronskian

Let p and q be continuous functions on an open interval I. The differential operator L is defined by

$$L[\phi] = \phi'' + p(t)\phi' + q(t)\phi$$

Where ϕ is some function.

Note: L operates on ϕ, i.e. ϕ is the input to L.

The value of L at a point t is

$$L[\phi](t) = \phi''(t) + p(t)\phi'(t) + q(t)\phi(t)$$

We will examine the second-order linear DE $L[\phi](t) = 0$ with ICs $y(t_0) = y_0$, $y'(t_0) = y'_0$.

We want to know whether the IVP
has a solution, more than one solution, and what is the structure and form of solutions.

Theorem (Existence and Uniqueness)

Let $p, q,$ and g be continuous in an open interval I containing t_0. Then the IVP

$$y'' + p(t)y' + q(t)y = g(t), \quad y(t_0) = y_0, \quad y'(t_0) = y'_0$$

has a unique solution $y = g(t)$ in the interval I.

Theorem (Principle of Superposition)

If y_1 and y_2 are solutions to the DE

$$L[y] = y'' + p(t)y' + q(t)y = 0,$$

then the linear combination $c_1y_1 + c_2y_2$
is also a solution for any \(c_1 \) and \(c_2 \).

Proof Follows from the linearity of \(\mathcal{L} \).

Q: When can \(c_1 \) and \(c_2 \) be chosen to satisfy the ICs \(y(0) = y_0 \) and \(y'(0) = y_0' \)?

We need

\[
\begin{align*}
 c_1 y_1(0) + c_2 y_2(0) &= y_0 \\
 c_1 y_1'(0) + c_2 y_2'(0) &= y_0'
\end{align*}
\]

in matrix form

\[
\begin{bmatrix}
 y_1(0) & y_2(0) \\
 y_1'(0) & y_2'(0)
\end{bmatrix}
\begin{bmatrix}
 c_1 \\
 c_2
\end{bmatrix}
=
\begin{bmatrix}
 y_0 \\
 y_0'
\end{bmatrix}
\]
When does this system have a unique solution?

\[W(t_0) = \det \begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y_1'(t_0) & y_2'(t_0) \end{bmatrix}. \]

\(W(t_0) \neq 0 \) guarantees a unique solution \(\begin{bmatrix} C_1 \\ C_2 \end{bmatrix} \).

\(W \) is called the Wronskian of the solutions \(y_1 \) and \(y_2 \).

Thus, suppose \(y_1 \) and \(y_2 \) are two solutions of

\[L[y] = y'' + p(t)y' + q(t)y = 0. \]

It is possible to choose \(C_1 \) and
\[c_2 \text{ so that } \]
\[y = c_1 y_1(t) + c_2 y_2(t) \]
Satisfies the DE and ICs \(y(t_0) = y_0 \), \(y'(t_0) = y'_0 \) if and only if the Wronskian
\[W[y_1, y_2] = y_1 y_2' - y_1' y_2 \]
is not zero at \(t_0 \).

Ex Consider the DE
\[y'' + 5y' + 6y = 0 \]
Find the Wronskian of \(y_1 \) and \(y_2 \).
The characteristic equation is
\[r^2 + 5r + 6 = 0 \]
\[(r + 3)(r + 2) = 0 \]
\[r = -3 \quad r = -2 \]

So \[y_1 = e^{-2t} \] and \[y_2 = e^{-3t} \].

Now,

\[
W[y_1, y_2] = \begin{vmatrix} -2t & -3t \\ e^t & e \\ -2e^{2t} & -3e^{3t} \end{vmatrix} = -3e^{5t} + 2e^{5t} = -e^{5t}
\]

We see that \(W \neq 0 \) for all \(t \), so any IC can be specified at any initial time \(t_0 \).

The expression

\[y = c_1 y_1(t) + c_2 y_2(t) \]
is called the **general solution** of \(L[y] = 0 \). \(y_1 \) and \(y_2 \) are said to form a **fundamental set of solutions** if and only if their Wronskian is nonzero for all \(t \).

Remark Nonzero Wronskian \(\iff \) \(y_1 \) and \(y_2 \) are linearly independent

Ex Show that \(y_1 = t^{\frac{1}{2}} \) and \(y_2 = \frac{1}{t} \) form a fundamental set of solutions of

\[
2t^2 y'' + 3ty' - y = 0, \quad t > 0.
\]

1st we need to show \(y_1 \) and \(y_2 \) are solutions.

\[
2t^2 y_1'' + 3ty_1' - y_1 = 2t^2 \left(t^{\frac{1}{2}} \right)'' + 3t \left(t^{\frac{1}{2}} \right)' - t^{\frac{1}{2}}
\]

\[
= 2t^2 \left(\frac{1}{2} t^{-\frac{1}{2}} \right)' + 3t \frac{1}{2} t^{\frac{3}{2}} - t^{\frac{1}{2}}
\]

\[
= 2t^2 \frac{1}{2} t^{\frac{3}{2}} + \frac{3}{2} t^{\frac{1}{2}} - t^{\frac{1}{2}}
\]
\[\frac{1}{2} t^2 + \frac{1}{2} t^2 \]
\[= 0 \checkmark \]

so \(y_1 \) is a solution.

\[
2 t^2 y_2^{\prime\prime} + 3 t y_2^{\prime} - y_2 = 2 t^2 \left(\frac{1}{t^2} \right)^{\prime\prime} + 3 t \left(\frac{1}{t^2} \right)^{\prime} - \frac{1}{t} \\
= 2 t^2 \left(\frac{-1}{t^2} \right)^{\prime} + 3 t \frac{-1}{t^2} - \frac{1}{t} \\
= 2 t^2 \frac{2}{t^3} + \frac{-3}{t} - \frac{1}{t} \\
= \frac{2}{t} - \frac{3}{t} - \frac{1}{t} \\
= 0 \checkmark
\]

so \(y_2 \) is a solution.

Now, we calculate the Wronskian

\[
W = \begin{vmatrix}
\frac{1}{2} t^2 & \frac{1}{t} \\
\frac{1}{2} t^\frac{1}{2} & -\frac{1}{t^2}
\end{vmatrix}
\]
\[t^\frac{1}{2}(-t^2) - \frac{1}{2} t^\frac{1}{2} t^{-1} \]
\[= -t^\frac{3}{2} - \frac{1}{2} t^\frac{3}{2} \]
\[= -\frac{3}{2} t^\frac{3}{2} \]

So \(\mathbf{W} \neq 0 \) for \(t > 0 \). Thus, \(y, \) and \(y_2 \) form a fundamental set of solutions and the general solution is
\[y(t) = c_1 t^\frac{1}{2} + c_2 \frac{1}{t^\frac{1}{2}} . \]

Thus if \(y = u(t) + iv(t) \) is a complex-valued solution of \(L[\mathbf{y}] = 0 \), then its real part \(u \) and imaginary part \(v \) are also solutions.

Proof: Follows from linearity of \(L \) and
\[L[y] = 0. \]

Hint: If \(a \cdot b = 0 \), then \(a = 0 \) and \(b = 0 \).

Theorem (Abel's Theorem)

If \(y_1 \) and \(y_2 \) are solutions of

\[L[y] = y'' + p(t)y' + q(t)y = 0 \]

where \(p \) and \(q \) are continuous on \(I \),

then the Wronskian is

\[W[y_1, y_2](t) = C \ e^{-\int p(t) \, dt} \]

where \(C \) is a constant depending on \(y_1 \) and \(y_2 \) but not on \(t \). \(W \) is either zero for all \(t \) in \(I \) or never zero in \(I \).