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1 Inverting the Laplace Transform

Rather than explicitly using the inverse Laplace Transform to return to the ¢-domain, we will compare the solution Y'(s) to
known transformed functions to infer the inversion. Again, the key idea is linearity.
Suppose
F(s) = Fi(s) + Fa(s) + - - 4 Fu(s),
and we know that fi(t) = L7H{Fi(s)}, ..., fu(t) = L7{F.(s)}. Then,

ft) =L7HF(s)} = L7H{Fu(s)} + -+ LTH{Fu(s)}-

Example 1.1. Previously, we found the solution to an initial value problem to be

s—1
Y(s) = —> ——
(5) = 53—
so let us now go back to the t-domain. Some Laplace transforms that we are familiar with are
o L{c}=¢
o L{e"} =L
o L{sin(at)} = i
o L{cos(at)} = zi
Using partial fractions to rewrite Y (s), we have
s—1
Y(s)= ———
() (s—2)(s+1)
A n B
s—2 s+1
_ A(s+1)+ B(s—2)
B (s—2)(s+1)
_s(A+B)+A-2B
o (s—=2)(s+1)
S0 we require
A+B=1
A—-2B=-1.
Therefore, A = % and B = % Thus,
1 2
Y(s)= —3 SH
() s—2 + s+1
Now, comparing Y (s) to our list of known Laplace transforms, we see that
1 2
Y _ 3 3
(5) s—2 + s+1
1 2
ﬁfl Y — E*l 3 3
ey = { S5
1 2
t) = E_l 3 —1 3
y(t) { s—2 } + s+1
1 1 2 1
t)==-LT1{ — Zct
v =3 {3—2}+ 3 {s—i—l}

We have found that
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2 Systems of First-Order Linear Equations: Introduction

We will consider systems of ODEs and denote the independent variable by ¢, the dependent variables by =1, x2, ..., z,, and

derivatives by %, x}, or 1. Why study systems of ODEs? Your model may involve involve interacting quantities, you may

arrive at a system of ODEs upond discretizing a PDE, or you may have an equation involving higher order derivatives. We
will see that higher order differential equations can be reformulated as a system of first-order ODEs.

Example 2.1. Recall the general equation for a spring-mass system
mu” 4+ yu’ + ku = F(t).

Let x1 = u and zo = u'. Then,

zy =
and
/ 12
Ty =U
S0
xh=u"
~ (F(t) = 7 — k)
= — ' —ku
m Y
1
— ~ (F(t) — y2 — ka1).
L (p(t) o — k)

In matrix form, we have the system

For an arbitrary n'" order equation,
y(n) = F(t7 y7 y/7 A 7y(n_1))7

we let

=Yy

T = y/

wy =y,
so that

1’;1 = y(n) = F(tvxtha' . .,fﬂn)~

More generally, the system of n first-order ODEs is

.%'/1 = Fl(t,fL‘l,Q?g, ces ,J}n)
xh = Fy(t,x1,22,...,7,)
I;L = Fn(t,l'l,l‘g, cee 7:6”)7
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and the solution of such a system consists of n functions

z1 = p1(t)

T2 = p2(1)

T = Pn(t)
to which we may also prescribe initial conditions

.’L‘1(to) = l‘(l)

Tn(to) = JU?L.

We can think of the solutions as a set of parametric equations in n-dimensional space.

Theorem. (Ezistence and Uniqueness) Let each of the n functions Fy, Fs, ..., F, and the n? partial derivatives %f ‘3—2,
oF OF, OF, OF, . . .
O Bl G G Ba be continuous in a region R of txixs - - x,-space defined by a <t < B, ay < x1 < P, ...,

Qn < Ty < B, and let (to,29,29,...,20) € R. Then there is an interval |ty —t| < h in which there exists a unique solution
T = g to the system of ODFEs that satisfies the initial condition.

2.1 Linear and Nonlinear System

If Fy, ..., F, are linear functions of x1, ..., x,, then the system is called linear. Otherwise, it is nonlinear. A general system
of n first-order linear ODEs is of the form

i =put)zr + -+ pin(t)xn + g1(2)
x5 = por(t)z1 + -+ + pon ()@ + g2(t)

If g;(t) =0,i=1,...,n, for t € I, the system is called homogeneous. Otherwise, it is called nonhomogeneous.

Theorem. (Ezistence and Uniqueness for Linear Systems) If p;;(t) and g;(t), 1,7 = 1,...,n, are continuous on I : o« <t < 3,
then there exists a unique solution ¥ = ¢ that satisfies the initial conditions. Moreover, the solution exists throughout the
interval I.

We will spend the remainder of our time studying linear systems of first-order ODEs, but first we review some of the
tools we require from linear algebra.

3 Linear Algebra Review

3.1 Matrices

The m x n matrix with entires a;; is

ail aig - ain
a21  a22

A=
Am1 Am2 Tt Amn

The transpose of A is denoted AT, and if A = (a;;), then AT = (aj;). The conjugate of A is denoted A and A = (a;;). The
adjoint of A is A" or A* = (@js)-
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3.2 Properties of Matrices
1. Equality: A and B are equal if a;; = b;; for each ¢ and j.
2. Zero: 0 will denote the vector whose entries are all zero.

3. Addition:
A+ B = (ai;) + (bij)-

4. Scalar Multiplication:
aA = a(aij) = (ozaij)

5. Matrix Multiplication: C = AB,
Cij = Z aikbkj.
k=1

Note that matrix multiplication is not commutative AB # BA

6. Multiplication of Vectors (dot product):
n
g = Zfﬁz‘yz‘-
i=1

Note that this produces a scalar.

e We may also consider the notion of an inner product,

i=1

e The length/magnitude of  is defined to be

[z]| = V(Z, Z).
e If (Z,7) = 0, then we must have that & = 0.
e If (Z,4) =0, then & and ¥ are said to be orthogonal.

7. Identity matrix:
1 0 0
I =
0 1
so that
Al =TA=A.

8. Inverse and Determinant:

e A is called nonsingular/invertible if there exists a matrix B so that AB = I and BA = I. We write B = A~L.
e If A has no inverse, we call A singular or noninvertible.

e A is nonsingular if and only if det A # 0.
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3.3 Matrix Functions

We will consider vectors and matrices whose elements are functions

z1(t)
To(t
#(t) = ¥)
Zn(t)
and
an(t) cee a1n(t)
A(t) = : & :
am1(t) -+ amn(t)

A(t) is called continuous if each element of A is continuous. Similarly,

% - daij
dt \ dt )’

and
[ awa- ( [ dt) |

Example 3.1. Consider the matriz function
sint t
Alt) = < 1 Cost) ’

We see that
1o [cost 1
A'(t) = ( 0 —sint)’

and
T . t2
/ A(t) dt = <—cost 2>
0 t Sint

Many of our familiar rules from calculus hold,

= (0% where C is a constant matrix

d

[ ] E (CA) dt

e L(A+B)=4 4 4B
d
dt

(AB) = A4B 1 ddp,

3.4 Systems of Linear Algebraic Equations

A system of linear algebraic equations is of the form
a1171 + a2 + - + A1pTn = by

o ATy = bn

Ap1Tp + Ap2Zyn +

or .
AZ =b.

(@21
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Ifb= 0, the system is called homogeneous. Otherwise, it is nonhomogeneous. If A is nonsingular, then # = A_lg, and the
homogeneous problem only has the solution & = 0. If A is singular, then A7 = b has no solution or a nonunique solution.
The homogeneous problem AZ = 0 has infinitely many solution.

If A is singular, when does AZ = b have a solution? We must have that (5, y) = 0 for all ¢ satsifying A*y = 0, where A*
is the adjoint of A. If this condition is satsifed, then there are infinitely many solutions of the form

7=10 ¢
where AZ(® = b and AE: 0.
3.5 Linear Dependence and Independence
We call 1. .. Z*) linearly dependent if there are scalars ¢4, ..., ¢y, with at least one nonzero, such that
7Y + 7@ 4o 4 0, 7®) = 0.

If the only solution is ¢; = ¢y = -+ = ¢}, = 0, then ), ..., ) are said to belinearly independent.

3.6 Eigenvalues and Eigenvectors

We may consider AZ = i as a linear transformation that maps & to y. We are interested in finding the vectors which are
mapped to a scalar multiple of itself, ¥ = AZ. Then,

AT = AT
AZ—A\E=0
(A= AX)Z=0.

This equation has nonzero solutions if and only if det(A — AI) = 0, which we call the characteristic equation. We call A an
eigenvalue and ¥ its corresponding eigenvector.



