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1 Inverting the Laplace Transform

Rather than explicitly using the inverse Laplace Transform to return to the t-domain, we will compare the solution Y (s) to
known transformed functions to infer the inversion. Again, the key idea is linearity.

Suppose
F (s) = F1(s) + F2(s) + · · ·+ Fn(s),

and we know that f1(t) = L−1{F1(s)}, . . . , fn(t) = L−1{Fn(s)}. Then,

f(t) = L−1{F (s)} = L−1{F1(s)}+ · · ·+ L−1{Fn(s)}.

Example 1.1. Previously, we found the solution to an initial value problem to be

Y (s) =
s− 1

s2 − s− 2
,

so let us now go back to the t-domain. Some Laplace transforms that we are familiar with are

• L{c} = c
s

• L{eat} = 1
s−a

• L{sin(at)} = a
s2+a2

• L{cos(at)} = s
s2+a2

Using partial fractions to rewrite Y (s), we have

Y (s) =
s− 1

(s− 2)(s+ 1)

=
A

s− 2
+

B

s+ 1

=
A(s+ 1) +B(s− 2)

(s− 2)(s+ 1)

=
s(A+B) +A− 2B

(s− 2)(s+ 1)
,

so we require

A+B = 1

A− 2B = −1.

Therefore, A = 1
3 and B = 2

3 . Thus,

Y (s) =
1
3

s− 2
+

2
3

s+ 1
.

Now, comparing Y (s) to our list of known Laplace transforms, we see that

Y (s) =
1
3

s− 2
+

2
3

s+ 1

L−1{Y (s)} = L−1

{ 1
3

s− 2
+

2
3

s+ 1

}
y(t) = L−1

{ 1
3

s− 2

}
+ L−1

{ 2
3

s+ 1

}
y(t) =

1

3
L−1

{
1

s− 2

}
+

2

3
L−1

{
1

s+ 1

}
y(t) =

1

3
e2t +

2

3
e−t.

We have found that

y(t) =
1

3
e2t +

2

3
e−t.
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2 Systems of First-Order Linear Equations: Introduction

We will consider systems of ODEs and denote the independent variable by t, the dependent variables by x1, x2, . . . , xn, and
derivatives by dx1

dt , x
′
1, or ẋ1. Why study systems of ODEs? Your model may involve involve interacting quantities, you may

arrive at a system of ODEs upond discretizing a PDE, or you may have an equation involving higher order derivatives. We
will see that higher order differential equations can be reformulated as a system of first-order ODEs.

Example 2.1. Recall the general equation for a spring-mass system

mu′′ + γu′ + ku = F (t).

Let x1 = u and x2 = u′. Then,
x′
1 = u′

and
x′
2 = u′′,

so

x′
2 = u′′

=
1

m
(F (t)− γu′ − ku)

=
1

m
(F (t)− γx2 − kx1) .

In matrix form, we have the system [
x′
1

x′
2

]
=

[
0 1

− k
m − γ

m

] [
x1

x2

]
+

[
0

F (t)
m

]
.

For an arbitrary nth order equation,
y(n) = F (t, y, y′, . . . , y(n−1)),

we let

x1 = y

x2 = y′

...

xn = y(n−1),

so that

x′
1 = y′ = x2

x′
2 = y′′ = x3

...

x′
n = y(n) = F (t, x1, x2, . . . , xn).

More generally, the system of n first-order ODEs is

x′
1 = F1(t, x1, x2, . . . , xn)

x′
2 = F2(t, x1, x2, . . . , xn)

...

x′
n = Fn(t, x1, x2, . . . , xn),
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and the solution of such a system consists of n functions

x1 = φ1(t)

x2 = φ2(t)

...

xn = φn(t)

to which we may also prescribe initial conditions

x1(t0) = x0
1

x2(t0) = x0
2

...

xn(t0) = x0
n.

We can think of the solutions as a set of parametric equations in n-dimensional space.

Theorem. (Existence and Uniqueness) Let each of the n functions F1, F2, . . . , Fn and the n2 partial derivatives ∂F1

∂x1
, ∂F1

∂x2
,

. . . , ∂F1

∂xn
, . . . , ∂Fn

∂x1
, ∂Fn

∂x2
, . . . , ∂Fn

∂xn
be continuous in a region R of tx1x2 · · ·xn-space defined by α < t < β, α1 < x1 < β1, . . . ,

αn < xn < βn, and let (t0, x
0
1, x

0
2, . . . , x

0
n) ∈ R. Then there is an interval |t0 − t| < h in which there exists a unique solution

x⃗ = φ⃗ to the system of ODEs that satisfies the initial condition.

2.1 Linear and Nonlinear System

If F1, . . . , Fn are linear functions of x1, . . . , xn, then the system is called linear. Otherwise, it is nonlinear. A general system
of n first-order linear ODEs is of the form

x′
1 = p11(t)x1 + · · ·+ p1n(t)xn + g1(t)

x′
2 = p21(t)x1 + · · ·+ p2n(t)xn + g2(t)

...

x′
1 = pn1(t)x1 + · · ·+ pnn(t)xn + gn(t)

If gi(t) = 0, i = 1, . . . , n, for t ∈ I, the system is called homogeneous. Otherwise, it is called nonhomogeneous.

Theorem. (Existence and Uniqueness for Linear Systems) If pij(t) and gi(t), i, j = 1, . . . , n, are continuous on I : α < t < β,
then there exists a unique solution x⃗ = φ⃗ that satisfies the initial conditions. Moreover, the solution exists throughout the
interval I.

We will spend the remainder of our time studying linear systems of first-order ODEs, but first we review some of the
tools we require from linear algebra.

3 Linear Algebra Review

3.1 Matrices

The m× n matrix with entires aij is

A =


a11 a12 · · · a1n

a21 a22 · · ·
...

...
...

. . .
...

am1 am2 · · · amn

 .

The transpose of A is denoted AT , and if A = (aij), then AT = (aji). The conjugate of A is denoted A and A = (aij). The

adjoint of A is A
T
or A∗ = (aji).
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3.2 Properties of Matrices

1. Equality: A and B are equal if aij = bij for each i and j.

2. Zero: 0⃗ will denote the vector whose entries are all zero.

3. Addition:
A+B = (aij) + (bij).

4. Scalar Multiplication:
αA = α(aij) = (αaij)

5. Matrix Multiplication: C = AB,

cij =

n∑
k=1

aikbkj .

Note that matrix multiplication is not commutative AB ̸= BA

6. Multiplication of Vectors (dot product):

x⃗T y⃗ =

n∑
i=1

xiyi.

Note that this produces a scalar.

• We may also consider the notion of an inner product,

(x⃗, y⃗) =

n∑
i=1

xiyi,

• The length/magnitude of x⃗ is defined to be

∥x∥ =
√

(x⃗, x⃗).

• If (x⃗, x⃗) = 0, then we must have that x⃗ = 0⃗.

• If (x⃗, y⃗) = 0, then x⃗ and y⃗ are said to be orthogonal.

7. Identity matrix:

I =


1 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · · · · 1


so that

AI = IA = A.

8. Inverse and Determinant:

• A is called nonsingular/invertible if there exists a matrix B so that AB = I and BA = I. We write B = A−1.

• If A has no inverse, we call A singular or noninvertible.

• A is nonsingular if and only if detA ̸= 0.
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3.3 Matrix Functions

We will consider vectors and matrices whose elements are functions.

x⃗(t) =


x1(t)
x2(t)
...

xn(t)


and

A(t) =

a11(t) · · · a1n(t)
...

. . .
...

am1(t) · · · amn(t)

 .

A(t) is called continuous if each element of A is continuous. Similarly,

dA

dt
=

(
daij
dt

)
,

and ∫ b

a

A(t) dt =

(∫ b

a

aij dt

)
.

Example 3.1. Consider the matrix function

A(t) =

(
sin t t
1 cos t

)
.

We see that

A′(t) =

(
cos t 1
0 − sin t

)
,

and ∫ π

0

A(t) dt =

(
− cos t t2

2
t sin t

)∣∣∣∣π
0

=

(
2 π2

2
π 0

)
.

Many of our familiar rules from calculus hold,

• d
dt (CA) = C dA

dt , where C is a constant matrix

• d
dt (A+B) = dA

dt + dB
dt

• d
dt (AB) = AdB

dt + dA
dt B.

3.4 Systems of Linear Algebraic Equations

A system of linear algebraic equations is of the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

...

an1xn + an2xn + · · ·+ annxn = bn

or
Ax⃗ = b⃗.
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If b⃗ = 0⃗, the system is called homogeneous. Otherwise, it is nonhomogeneous. If A is nonsingular, then x⃗ = A−1⃗b, and the
homogeneous problem only has the solution x⃗ = 0⃗. If A is singular, then Ax⃗ = b⃗ has no solution or a nonunique solution.
The homogeneous problem Ax⃗ = 0⃗ has infinitely many solution.

If A is singular, when does Ax⃗ = b⃗ have a solution? We must have that (⃗b, y⃗) = 0 for all y⃗ satsifying A∗y⃗ = 0⃗, where A∗

is the adjoint of A. If this condition is satsifed, then there are infinitely many solutions of the form

x⃗ = x⃗(0) + ξ⃗,

where Ax⃗(0) = b⃗ and Aξ⃗ = 0⃗.

3.5 Linear Dependence and Independence

We call x⃗(1),. . . ,x⃗(k) linearly dependent if there are scalars c1, . . . , ck, with at least one nonzero, such that

c1x⃗
(1) + c2x⃗

(2) + · · ·+ ckx⃗
(k) = 0⃗.

If the only solution is c1 = c2 = · · · = ck = 0, then x⃗(1), . . . , x⃗(k) are said to belinearly independent.

3.6 Eigenvalues and Eigenvectors

We may consider Ax⃗ = y⃗ as a linear transformation that maps x⃗ to y⃗. We are interested in finding the vectors which are
mapped to a scalar multiple of itself, y⃗ = λx⃗. Then,

Ax⃗ = λx⃗

Ax⃗− λx⃗ = 0

(A− λI) x⃗ = 0.

This equation has nonzero solutions if and only if det(A − λI) = 0, which we call the characteristic equation. We call λ an
eigenvalue and x⃗ its corresponding eigenvector.
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