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1 Basic Theory of Systems of First-Order Linear Equations

Consider the general linear system
F(t) = P(t)T + g(t),

where P is an nxn matrix. Continuity of P and ¢ guarantees existence of solutions, and we will first consider the homogeneous
equation
¥ =P@)T.

Later, we will consider the nonhomogeneous equation.

Theorem. (Principle of Superposition) If #V) and 2 are solutions of ¥ = P(t)¥, then c1 &) + co@®) is a solution for any
constants ¢; and cs.

If zU, ..., #* are solutions to a system of k linear equations, then
F=c 7V 4+ ek

is a solution. That is to say, every finite linear combination of solutions is a solution.
Consider the matrix
| | |

Xty =20 @ ... z0)
| | |
where ()| ..., #(™ are solutions to the homogeneous system. The columns of X (¢) are linearly independent if and only if
det (X (t)) # 0. The determinant of X is called the Wronskian of #1), ..., (™) and denoted W[z, 2 ... #™](t).
Theorem. If 71 ,. .. 2™ are linearly independent solutions, then the linear combination

=@V t) + @@ () + - + enZn(),

expresses each solution of the system & = P(t)Z in exactly one way. If ¢1, ..., ¢, are thought of as arbitrary, then ¥ is
called the general solution. A set of linearly independent solutions is said to form a fundamental set of solutions.

Theorem. (Abel’s Theorem) If V), ..., &™) are solutions on o < t < 3, then W[ZM), ... Z™](t) is either identically zero
or never vanishes.

Theorem. If ¥ = (t) + iU(t) is a complez-valued solution, then its real part 4(t) and its imaginary part U(t) are also
solutions.

2 Homogeneous Linear Systems with Constant Coefficients

Consider the system
7 = A7,

where A is a constant n X n matrix. The equilibria of the system are where ' = 0, so solutions to the homogeneous problem,
AZ = 0, yield the equilibria. If det(A) # 0, then & = 0 is the only equilibria, so if A is nonsingular, the origin is our only
equilibria. What about the stability of £ = 0?7 When n = 2, we can visualize qualitative features in the x;25-plane (phase
plane). We will use AZ to plot the direction field and a number of solution curves (phase portrait).

2.1 Solvng Systems of ODEs

Consider the system

Once again, we look for solutions of the form
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Then,
ge'tr = Age’
Age” — ge”r =0
(A—rI)ée™ = 0.

Since €™ # 0, we must have that

—

(A—rD)E=0.

Thus, we may determine the solutions of the system by finding the eigenpairs of A.

5 (1 1),
T=\y; 1)%
First, we find the eigenvalues of the coefficient matriz. We have
1 1
(1 1) ar) =0
1—2A 1
det(< 4 1_>\>)0

(1-=XN1=X)—-4=0
A —2X-3=0
A=3)(A+1)=0,

Example 2.1. Find the general solution to

so the eigenvalues are Ay = 3 and Ay = —1. Now, we find the corresponding eigenvectors. Let 51 = (?1) , SO
12

(A-\DE =0

2 1) /¢ -
(7 %) () -0
7 (&1 (& 1
5‘(@)‘(2&1)‘5“ (2)

so our eigenvector is 51 = <;> Next, let 52 = <§21>, S0
22

We see that 10 = 2£11. Now,

We see that £29 = —2€91, SO
(@) (%)= ()
? 22 —2821 22/

. .z 1 ,
so our eigenvector is £3 = ( 9 Thus our solutions are

1 1
~(1) _ 3t ~2) _ ot
ORI <2) ORI <2>

S 1 _ 1
7= cret <2) +coet <_2> )

and the general solution is
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2.2 Drawing the Phase Plane

Often, solving a system of (nonlinear) differential equations my be infeasible, so plotting the phase plane will give us invaluable
qualitative information which allows us to analyze the behavior of solutions. The information we will gather to paint our
portrait are

1. Equilibria

2. Eigenvalues and eigenvectors

3. Nullclines

4. The sign of 2} in regions defined by the nullclines

Example 2.2. Sketch the phase plane for the system

L (1 1) .

When solving a system of n x n system of linear first-order differential equations, we follow the same procedure:

2.3 General n x n Systems

1. Find eigenvectors and eigenvalues

2. Write down the general Solution

3. Use initial conditions to determine ¢y, ..., ¢,

The eigenvalues are determined by the n*P-degree polynomial equation
det(AxI) =0.

The eigenvalues that we may enounter come in three flavors:

1. real and distinct

2. complex conjugate pairs

3. repeated roots

Example 2.3. Find the general solution to

011
=110 1|Z
110

First, we find the eigenvalues of the coefficient matriz. We have

0 1 1
0 = det 1 0 1) =M
1 10
-2 1 1
=det|{ 1 =X 1
1 1 =)

)\det(l)\ _&)1(} _1/\>+<_1)\ 1)
( —D—(=A=1+ 1+
“AA=-DA+D)+A+1D)+(1+N)

(A—&—l)( AA=1)+2)
=A+D(=N+21+2)
=A+D(=A-D(A-2),
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s0 our eigenvalues are A1 2 = —1 and A3 = 2. Now, we find the corresponding eigenvectors. Let & = | &12 |, so
13
1 1 1 ISE!
1 1 1 &2 | =0.
11 1) \&s
We see that €11 = —&12 — £13, S0
. S8 —&12 — &3 —&12 —&13 -1 -1
G =& = 12 = &2 |+ O | =&2| 1 |+&s3(| O
13 13 0 13 0 1
Therefore our two eigenvectors are
-1 = -1
1= 1], &=10
0 1
. €31
Now, let &3 = | &€32 |, so
£33
§31 ~
€321 =0
§33
1 -0.5 —-0.5 £31
1 -2 1 &5 =0
1 1 -2 E33
1 —-0.5 —-0.5 £31
0 —-15 15 &30 | =0,
0 15 -—15 £33
and €31 = 0.5€32 4+ 0.5&33 and 32 = E33. Therefore, we see that
. &31 0.5&32 + 0.5&33 0.5&32 4 0.5&32 1
=182 = 32 = 32 =& (1],
&33 &30 &32 1
1
so &3 = | 1]|. Thus, our solutions are
1
-1 -1 1
20—t 1 7 7@ — ot | g , 703 — 2t [ 1 ’
0 1 1
and the general solution is
-1 -1 1
Z=cre | 1 | +cqe 0 | +e5e® |1



