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1 Modeling

Our motivation behind studying differential equations comes from their ability to model the physical phonomena that interest
us. Our specializations vary, but the basic principles behind the construction of mathematical models follows the same ideas
for each of us:

1. Construct the model

2. Analyze the model

3. Compare the model with our experiment or observation of interest

Constructing the model requies us to hypothesize about how our observations can be explained. Once we have built a
model, we hope to analyze this model using the techniques we will study in this course. We can attempt to solve our governing
equations (analytically or numerically), or we may attempt to gain qualitative insight about the predicted behavior. Once
we understand how our model works, we then examine whether our model and observations align. If they do, then great! If
they do not, we review the assumptions we made and see how we can improve our model to coincide with our experiment.

We will now construct a model using a first-order differential equation, and we will leave parameters in our differential
equation, so that we may tune the model to our observations or test other hypothetical situations.

Lake Shasta in northern California is the state of California’s largest reservoir, and it is formed by the Shasta Dam on
the Sacramento river. We will create a model for the volume of water in Lake Shasta. Let V (t) be the volume of water in
the lake at time t, and we suppose that the volume of water in the lake is not constant. Let r1(t) be the inflow and r2(t) the
outflow. Then,

dV

dt
= r1(t)− r2(t).

How can we model r1(t)?

• rain fall

• snow melt

We have not yet established a time scale, so let us choose the time scale to be years. Then,

r1(t) = cos(2πt)

gives us the desired shape for the inflow. Note that t = 1 is March of year 1, t = 2 is March of year 2, and so on. Next, we
do not want negative flow, so let us add 1 to r1(t),

r1(t) = cos(2πt) + 1.

How should we model the outflow? For now, let us set r2(t) = c1. That is, there is a constant flow out of the lake. What
are some potential problems we need to keep in mind when we choose c1?

• If c1 is too large, the lake could empty.

• If c1 is too small, the lake could overflow.

What about initial conditions? The lake began storing water in 1944, so if we let t = 0 correspond to March 1944, then
our initial condition is V (0) = 0. Thus, we have the initial value problem

dV

dt
= cos(2πt) + 1− c1, V (0) = 0.

Now, we solve the initial value problem. We have∫
dV

dt
dt =

∫
cos(2πt) + 1− c1 dt

V (t) =
1

2π
sin(2πt) + t− c1t+ c2.
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Now, from the initial condition, we have
0 = V (0) = c2.

Therefore, the solution to the initial value problem is

V (t) =
1

2π
sin(2πt) + t− c1t.

We can find suitable values for c1 by considering Vmax and Vmin. That is, it may be undesirable to have the lake overflow or
completely empty. You should check whether we can find c1 so that the lake does not flow over the top of the dam.

2 Linear vs Nonlinear Differential Equations

Theorem. Existence and uniqueness for first order linear differential equations. Let p and g be continuous functions on the
interval I : α < t < β and t0 ∈ I. Then, there is a unique function y = φ(t) that satisfies the differential equation

y′ + p(t)y = g(t)

for each t ∈ I and satsifies the initial condition y(t0) = y0.

Proof. We found that
µ(t) = e

∫
p(t) dt.

Since p is continuous for α < t < β, µ is defined, differentiable, and nonzero. Next, µ and g are continuous, so µg is integrable
and

∫
µg dt is differentiable. Therefore,

y =
1

µ(t)

(∫
µ(t)g(t) dt+ C

)
exists and is differentiable for α < t < β.

Theorem. Existence and uniqueness for first order nonlinear differential equations. Let f and ∂f
∂y be continuous in some

rectangle α < t < β, γ < y < δ containing (t0, y0). Then in some interval t0 − h < t < t0 + h contained in α < t < β, there
is a unique solution to the initial value problem

y′ = f(t, y), y(t0) = y0.

Note: The conditions in the theorem are sufficient, but not necessary. That is, we can make a weaker assumption on f .
We can guarantee existence (but not uniqueness) by only assuming f is continuous.

Consider the initial value problem
y′ = y

1
3 , y(0) = 0

for t ≥ 0. We have that f(t, y) = y
1
3 , so ∂f

∂y = 1
3y

− 2
3 . Notice that f is continuous everywhere, but ∂f

∂y does not exist when
y = 0. Therefore, the previous theorem does not apply. Since f is continuous, a solution exists, but it is not necessarily
unique.

Let us solve the initial value problem, and see the implication of not having a unique solution. Solving the differential
equation, we have

y−
1
3 y′ = 1

3

2
y

2
3 = t+ c

y =

(
2

3
(t+ c)

) 3
2

.

Now, using the initial condition gives

0 = y(0) =

(
2

3
c

) 3
2

,
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so c = 0. Therefore,

φ1(t) =

(
2

3
t

) 3
2

, t ≥ 0,

is a solution to the initial value problem. But also,

φ2(t) = −
(
2

3
t

) 3
2

, t ≥ 0

is a solution to the initial value problem. Notice that for any value of t0,

y =

{
0 0 ≤ t < t0

±
(
2
3 (t− t0)

) 3
2 , t ≥ t0

is a solution to the initial value problem.

2.1 Interval of Existence

• Linear equations: The solution exists in the interval about t = t0 in which p and g are continuous.

• Nonlinear equations: y = φ(t) exists as long as (t, φ(t)) remains in the hypothesis region. Note that φ(t) is not known
ahead of time.

2.2 General Solution

• Linear equations: We can obtain all possible solutions by specifying the constant of integration.

• Nonlinear equations: There may be solutions that cannot be obtained by giving values to the constant.

2.3 Implicit Solutions

• Linear equations: y = φ(t) (explicit)

• Nonlinear equations: F (t, y) = 0 (implicit)

3 Autonomous Differential Equations and Population Dynamics

A first order ODE in which the independent variable does not appear explicitly is called autonomous, and it is of the form

dy

dt
= f(y).

This equation is separable, and we will examine this equation in the context of population dynamics.

3.1 Exponential Growth

Suppose the rate of change of a population is proportional to the current population. Then,

dy

dt
= ry,

where r is the growth rate, and y is the population. If we specify that y(0) = y0, then our solution to the initial value problem
is y = y0e

rt. Then, we see that

• if r > 0, then y → ∞ as t → ∞

• if r < 0, then y → 0 as t → ∞

• r = 0, then y = y0 for all t
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3.2 Logistic Growth

Suppose the growth rate depends on the population. Then we have

dy

dt
= h(y)y.

Consider h(y) = r − ay, where a > 0. Then,
dy

dt
= (r − ay)y,

or
dy

dt
= r

(
1− y

k

)
y

where k = r
a . The parameter r is called the intrinsic growth rate, and it represents the rate of growth when there are no

external influences. This differential equation is called the logistic equation.

3.3 Qualitative Analysis

Identifying equilibrium solutions gives us insight into the behavior of solutions. Equilibrium solutions are solution for which
dy
dt = 0 for all t. so we may find these equilibrium solutions by determining the values of y for wrhich f(y) = 0. Also,
dy
dt = f(y) = 0, so we are looking for the critical points of y.
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