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1 Solutions of the Homogeneous Equations and the Wronskian

Let p and q be continuous functions on an open interval I. Consider the differential operator L defined by

L[φ] = φ′′ + pφ′ + qφ,

where φ is some function. Here, L operates on φ. That is to say, φ acts as the input to the operator L. The value of L[φ]
at a point t is

L[φ](t) = φ′′(t) + p(t)φ′(t) + q(t)φ(t).

We will examine the second-order linear differential equation

L[φ](t) = 0,

with initial conditions
y(t0) = y0, y′(t0) = y0.

We want to know whether the initial value problem has a solution, whether it has more than one solution and how solutions
are structured and formed.

Theorem. (Existence and Uniqueness) Let p, g, and q be continuous in an open interval I containing t0. Then the initial
value problem

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′0,

has a unique solution y = φ(t) in the interval I.

Theorem. If y1 and y2 are solutions to the differential equation

L[y] = y′′ + p(t)y′ + q(t) = 0,

then the linear combination c1y1 + c2y2 is also a solution for any c1 and c2.

The proof of the previous theorem follows from the linearity of L. Now, when can c1 and c2 be chosen to satisfy the
initial conditions? We require

c1y1(t0) + c2y2(t0) = y0

c1y
′
1(t0) + c2y

′
2(t0) = y′0,

or in matrix form [
y1(t0) y2(t0)
y′1(t0) y′2(t0)

] [
c1
c2

]
=

[
y0
y′0

]
.

When does this system have a unique solution? Let

W (t0) = det

([
y1(t0) y2(t0)
y′1(t0) y′2(t0)

] [
c1
c2

]
=

[
y0
y′0

])
.

If W (t0) ̸= 0, then we are guaranteed a unique solution

[
c1
c2

]
, and W is called the Wronskian of the solutions y1 and y2.

Theorem. Suppose y1 and y2 are two solutions of

L[y] = y′′ + p(t)y′ + q(t)y = 0.

It is possible to choose c1 and c2 so that
y = c1y1(t) + c2y1(t)

satisfies the differential equation and initial conditions if and only if the Wronskian

W [y1, y2] = y1y
′
2 − y′1y2

is not zero at t0.
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Consider the differential equation
y′′ + 5y′ + 6y = 0.

Find the Wronskian of y1 and y2. The characteristic equation is

p(r) = r2 + 5r + 6

= (r + 3)(r + 2),

so our roots are r1 = −3 and r2 = −2. Therefore, our solutions are

y1 = e−2t

and
y2 = e−3t.

Now,

W [y1, y2](t) =

∣∣∣∣ e−2t e−3t

−2e−2t −3e−3t

∣∣∣∣
= −3e−5t + 2e−5t

= −e−5t.

We see that W [y1, y2](t) ̸= 0 for all t, so any initial condition can be specified at any initial time t. The expression

y = c1y1(t) + c2y2(t)

is called the general solution of L[y] = 0, and y1 and y2 are said to form a fundamental set of solutions if their Wronskian is
nonzero for all t. Notice that we have a nonzero Wronskian if and only if y1 and y2 are linearly independent.

Show that y1 = t
1
2 and y2 = 1

t form a fundamental set of solutions of

2t2y′′ + 3ty′ − y = 0, t > 0.

First, we need to show that y1 and y2 satisfy the differential equation. Using y1 in the differential equation, we have

2t2y′′1 + 3ty′1 − y1 = 2t2(t
1
2 )′′ + 3t(t

1
2 )′ − t

1
2

= 2t2
(
1

2
t−

1
2

)′

+ 3t
1

2
t−

1
2 − t

1
2

= 2t2
(
−1

4

)
t−

3
2 +

3

2
t
1
2 − t

1
2

= −1

2
t
1
2 +

1

2
t
1
2

= 0,

so y1 is a solution. Next, we use y2 in the differential equation,

2t2y′′2 + 3ty′2 − y2 = 2t2
(
1

t

)′′

+ 3t

(
1

t

)′

− 1

t

= 2t2
(
− 1

t2

)′

+ 3t

(
− 1

t2

)
− 1

t

= 2t2
2

t3
− 3

t
− 1

t

=
4

t
− 4

t
= 0,
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so y2 is a solution. Now, we compute the Wronskian

W [y1, y2](t) =

∣∣∣∣ t
1
2

1
t

1
2 t

− 1
2 − 1

t2

∣∣∣∣
= t

1
2

(
−t−2

)
− 1

2
t−

1
2 t−1

= −t−
3
2 − 1

2
t−

3
2

= −3

2
t−

3
2 .

We see that W [y1, y2](t) ̸= 0 for t > 0, so y1 and y2 form a fundamental set of solutions. Thus, the general solution to the
differential equation is

y(t) = c1t
1
2 + c2

1

t
.

Theorem. If y = u(t) + iv(t) is a complex-valued solution of L[φ] = 0, then its real part u and imaginary part v are also
solutions.

The proof follows form the linearity of L, that L[y] = 0, and the fact that if a+ ib = 0, then a = 0 and b = 0.

Theorem. (Abel’s Theorem) If y1 and y2 are solutions of

L[y] = y′′ + p(t)y′ + q(t)y = 0,

where p and q are continuous on I, then the Wronskain is

W [y1, y2](t) = Ce−
∫
p(t) dt,

where C is a constant depending on y1 and y2, but not on t. W is either zero for all t in I or never zero in I.

2 Complex Roots of the Characteristic Equation

Our second-order constant coefficient homogeneous differential equation is

ay′′ + by′ + cy = 0,

where a, b, and c are constants. The characteristic equation is

p(r) = ar2 + br + c,

so

r =
−b±

√
b2 − 4ac

2a
.

What happens when b2 − 4ac < 0? We have roots r1 and r2 which are complex conjugates of each other

r1 = λ+ iµ, r2 = λ− iµ,

where λ and µ are real numbers. Our solutions are
y1 = e(λ+iµ)t

and
y2 = e(λ−iµ)t.

What does Euler’s number raised to a complex power even mean?
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2.1 Euler’s Formula

Recall the Taylor (Maclaurin) series for et about t = 0,

et =

∞∑
n=0

tn

n!

= 1 + t+
t2

2
+

t3

3!
+ · · · .

Now,

eit =

∞∑
n=0

(it)n

n!

= 1 + it− t2

2!
− it3

3!
+

t4

4!
+ · · ·

=

∞∑
n=0

(−1)nt2n

(2n)!
+ i

∞∑
n=0

(−1)nt2n+1

(2n+ 1)!

= cos(t) + i sin(t).

Thus,
eit = cos(t) + i sin(t),

and this is called Euler’s formula. Now,

y1 = e(λ+iµ)t

= eλteiµt

= eλt (cos(µt) + i sin(µt))

and

y2 = e(λ−iµ)t

= eλte−iµt

= eλt (cos(µt)− i sin(µt)) ,

where we recalled that sine is an odd function
sin(−t) = − sin(t),

and cosine is an even function
cos(−t) = cos(t).

2.2 Complex Roots: The General Solution

Recall that if y = u+ iv is a solution, then u and v are each solutions, so u = eλt cos(µt) and v = eλt sin(µt) are our solutions.
The Wronskian is

W [u, v] =

∣∣∣∣ eλt cos(µt) eλt sin(µt)
λeλt cos(µt)− µeλt sin(µt) λeλt sin(µt) + µeλt cos(µt)

∣∣∣∣
= λe2λt cos(µt) sin(µt) + µe2λt cos2(µt)− λe2λt sin(µt) cos(µt) + µe2λt sin2(µt)

= µe2λt
(
cos2(µt) + sin2(µt)

)
= µe2λt,

so, W [u, v] ̸= 0 if µ ̸= 0. Therefore, u and v form a fundamental set of solutions if µ ̸= 0. Notice that if µ = 0, then r1 = λ
and r2 = λ, so we have real repeated roots. We will return to this case later, but when the characteristic equation has
complex roots, we see that the general solution of the differential equation is

y(t) = c1e
λt cos(µt) + c2e

λt sin(µt).
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Consider the following initial value problem

y′′ + y′ + 9.25y = 0, y(0) = 2, y′(0) = 0.

The characteristic equation is
p(r) = r2 + r + 9.25,

and so

r =
−1±

√
1− 37

2

=
−1± 6i

2

= −1

2
± 3i.

Thus, our general solution is
y = c1e

− 1
2 t cos(3t) + c2e

− 1
2 t sin(3t).

Now, we use the initial conditions to determine c1 and c2. We have

2 = y(0)

= c1,

so
y = 2e−

1
2 t cos(3t) + c2e

− 1
2 t sin(3t).

Next,

y′ = −e−
1
2 t cos(3t)− 6e−

1
2 t sin(3t)− c2

2
e−

1
2 t sin(3t) + 3c2e

− 1
2 t cos(3t),

so

0 = y′(0)

0 = −1 + 3c2

1

3
= c2.

Thus, the solution to the initial value problem is

y = 2e−
1
2 t cos(3t) +

1

3
e−

1
2 t sin(3t).

Notice that the solution oscillates with a decaying amplitude, and limt→∞ y(t) = 0.
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