

1 Solutions of the Homogeneous Equations and the Wronskian

Let p and q be continuous functions on an open interval I . Consider the differential operator L defined by

$$L[\varphi] = \varphi'' + p\varphi' + q\varphi,$$

where φ is some function. Here, L operates on φ . That is to say, φ acts as the input to the operator L . The value of $L[\varphi]$ at a point t is

$$L[\varphi](t) = \varphi''(t) + p(t)\varphi'(t) + q(t)\varphi(t).$$

We will examine the second-order linear differential equation

$$L[\varphi](t) = 0,$$

with initial conditions

$$y(t_0) = y_0, \quad y'(t_0) = y'_0.$$

We want to know whether the initial value problem has a solution, whether it has more than one solution and how solutions are structured and formed.

Theorem. (Existence and Uniqueness) *Let p , g , and q be continuous in an open interval I containing t_0 . Then the initial value problem*

$$y'' + p(t)y' + q(t)y = g(t), \quad y(t_0) = y_0, \quad y'(t_0) = y'_0,$$

has a unique solution $y = \varphi(t)$ in the interval I .

Theorem. *If y_1 and y_2 are solutions to the differential equation*

$$L[y] = y'' + p(t)y' + q(t)y = 0,$$

then the linear combination $c_1y_1 + c_2y_2$ is also a solution for any c_1 and c_2 .

The proof of the previous theorem follows from the linearity of L . Now, when can c_1 and c_2 be chosen to satisfy the initial conditions? We require

$$\begin{aligned} c_1y_1(t_0) + c_2y_2(t_0) &= y_0 \\ c_1y'_1(t_0) + c_2y'_2(t_0) &= y'_0, \end{aligned}$$

or in matrix form

$$\begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y'_0 \end{bmatrix}.$$

When does this system have a unique solution? Let

$$W(t_0) = \det \left(\begin{bmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} y_0 \\ y'_0 \end{bmatrix} \right).$$

If $W(t_0) \neq 0$, then we are guaranteed a unique solution $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$, and W is called the Wronskian of the solutions y_1 and y_2 .

Theorem. *Suppose y_1 and y_2 are two solutions of*

$$L[y] = y'' + p(t)y' + q(t)y = 0.$$

It is possible to choose c_1 and c_2 so that

$$y = c_1y_1(t) + c_2y_2(t)$$

satisfies the differential equation and initial conditions if and only if the Wronskian

$$W[y_1, y_2] = y_1y'_2 - y'_1y_2$$

is not zero at t_0 .

Consider the differential equation

$$y'' + 5y' + 6y = 0.$$

Find the Wronskian of y_1 and y_2 . The characteristic equation is

$$\begin{aligned} p(r) &= r^2 + 5r + 6 \\ &= (r + 3)(r + 2), \end{aligned}$$

so our roots are $r_1 = -3$ and $r_2 = -2$. Therefore, our solutions are

$$y_1 = e^{-2t}$$

and

$$y_2 = e^{-3t}.$$

Now,

$$\begin{aligned} W[y_1, y_2](t) &= \begin{vmatrix} e^{-2t} & e^{-3t} \\ -2e^{-2t} & -3e^{-3t} \end{vmatrix} \\ &= -3e^{-5t} + 2e^{-5t} \\ &= -e^{-5t}. \end{aligned}$$

We see that $W[y_1, y_2](t) \neq 0$ for all t , so any initial condition can be specified at any initial time t . The expression

$$y = c_1 y_1(t) + c_2 y_2(t)$$

is called the general solution of $L[y] = 0$, and y_1 and y_2 are said to form a fundamental set of solutions if their Wronskian is nonzero for all t . Notice that we have a nonzero Wronskian if and only if y_1 and y_2 are linearly independent.

Show that $y_1 = t^{\frac{1}{2}}$ and $y_2 = \frac{1}{t}$ form a fundamental set of solutions of

$$2t^2y'' + 3ty' - y = 0, \quad t > 0.$$

First, we need to show that y_1 and y_2 satisfy the differential equation. Using y_1 in the differential equation, we have

$$\begin{aligned} 2t^2y_1'' + 3ty_1' - y_1 &= 2t^2(t^{\frac{1}{2}})'' + 3t(t^{\frac{1}{2}})' - t^{\frac{1}{2}} \\ &= 2t^2\left(\frac{1}{2}t^{-\frac{1}{2}}\right)' + 3t\frac{1}{2}t^{-\frac{1}{2}} - t^{\frac{1}{2}} \\ &= 2t^2\left(-\frac{1}{4}\right)t^{-\frac{3}{2}} + \frac{3}{2}t^{\frac{1}{2}} - t^{\frac{1}{2}} \\ &= -\frac{1}{2}t^{\frac{1}{2}} + \frac{1}{2}t^{\frac{1}{2}} \\ &= 0, \end{aligned}$$

so y_1 is a solution. Next, we use y_2 in the differential equation,

$$\begin{aligned} 2t^2y_2'' + 3ty_2' - y_2 &= 2t^2\left(\frac{1}{t}\right)'' + 3t\left(\frac{1}{t}\right)' - \frac{1}{t} \\ &= 2t^2\left(-\frac{1}{t^2}\right)' + 3t\left(-\frac{1}{t^2}\right) - \frac{1}{t} \\ &= 2t^2\frac{2}{t^3} - \frac{3}{t} - \frac{1}{t} \\ &= \frac{4}{t} - \frac{4}{t} \\ &= 0, \end{aligned}$$

so y_2 is a solution. Now, we compute the Wronskian

$$\begin{aligned} W[y_1, y_2](t) &= \begin{vmatrix} t^{\frac{1}{2}} & \frac{1}{t} \\ \frac{1}{2}t^{-\frac{1}{2}} & -\frac{1}{t^2} \end{vmatrix} \\ &= t^{\frac{1}{2}}(-t^{-2}) - \frac{1}{2}t^{-\frac{1}{2}}t^{-1} \\ &= -t^{-\frac{3}{2}} - \frac{1}{2}t^{-\frac{3}{2}} \\ &= -\frac{3}{2}t^{-\frac{3}{2}}. \end{aligned}$$

We see that $W[y_1, y_2](t) \neq 0$ for $t > 0$, so y_1 and y_2 form a fundamental set of solutions. Thus, the general solution to the differential equation is

$$y(t) = c_1 t^{\frac{1}{2}} + c_2 \frac{1}{t}.$$

Theorem. *If $y = u(t) + iv(t)$ is a complex-valued solution of $L[\varphi] = 0$, then its real part u and imaginary part v are also solutions.*

The proof follows from the linearity of L , that $L[y] = 0$, and the fact that if $a + ib = 0$, then $a = 0$ and $b = 0$.

Theorem. (Abel's Theorem) *If y_1 and y_2 are solutions of*

$$L[y] = y'' + p(t)y' + q(t)y = 0,$$

where p and q are continuous on I , then the Wronskian is

$$W[y_1, y_2](t) = Ce^{-\int p(t) dt},$$

where C is a constant depending on y_1 and y_2 , but not on t . W is either zero for all t in I or never zero in I .

2 Complex Roots of the Characteristic Equation

Our second-order constant coefficient homogeneous differential equation is

$$ay'' + by' + cy = 0,$$

where a , b , and c are constants. The characteristic equation is

$$p(r) = ar^2 + br + c,$$

so

$$r = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

What happens when $b^2 - 4ac < 0$? We have roots r_1 and r_2 which are complex conjugates of each other

$$r_1 = \lambda + i\mu, \quad r_2 = \lambda - i\mu,$$

where λ and μ are real numbers. Our solutions are

$$y_1 = e^{(\lambda+i\mu)t}$$

and

$$y_2 = e^{(\lambda-i\mu)t}.$$

What does Euler's number raised to a complex power even mean?

2.1 Euler's Formula

Recall the Taylor (Maclaurin) series for e^t about $t = 0$,

$$\begin{aligned} e^t &= \sum_{n=0}^{\infty} \frac{t^n}{n!} \\ &= 1 + t + \frac{t^2}{2} + \frac{t^3}{3!} + \dots \end{aligned}$$

Now,

$$\begin{aligned} e^{it} &= \sum_{n=0}^{\infty} \frac{(it)^n}{n!} \\ &= 1 + it - \frac{t^2}{2!} - \frac{it^3}{3!} + \frac{t^4}{4!} + \dots \\ &= \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} \frac{(-1)^n t^{2n+1}}{(2n+1)!} \\ &= \cos(t) + i \sin(t). \end{aligned}$$

Thus,

$$e^{it} = \cos(t) + i \sin(t),$$

and this is called Euler's formula. Now,

$$\begin{aligned} y_1 &= e^{(\lambda+i\mu)t} \\ &= e^{\lambda t} e^{i\mu t} \\ &= e^{\lambda t} (\cos(\mu t) + i \sin(\mu t)) \end{aligned}$$

and

$$\begin{aligned} y_2 &= e^{(\lambda-i\mu)t} \\ &= e^{\lambda t} e^{-i\mu t} \\ &= e^{\lambda t} (\cos(\mu t) - i \sin(\mu t)), \end{aligned}$$

where we recalled that sine is an odd function

$$\sin(-t) = -\sin(t),$$

and cosine is an even function

$$\cos(-t) = \cos(t).$$

2.2 Complex Roots: The General Solution

Recall that if $y = u + iv$ is a solution, then u and v are each solutions, so $u = e^{\lambda t} \cos(\mu t)$ and $v = e^{\lambda t} \sin(\mu t)$ are our solutions. The Wronskian is

$$\begin{aligned} W[u, v] &= \begin{vmatrix} e^{\lambda t} \cos(\mu t) & e^{\lambda t} \sin(\mu t) \\ \lambda e^{\lambda t} \cos(\mu t) - \mu e^{\lambda t} \sin(\mu t) & \lambda e^{\lambda t} \sin(\mu t) + \mu e^{\lambda t} \cos(\mu t) \end{vmatrix} \\ &= \lambda e^{2\lambda t} \cos(\mu t) \sin(\mu t) + \mu e^{2\lambda t} \cos^2(\mu t) - \lambda e^{2\lambda t} \sin(\mu t) \cos(\mu t) + \mu e^{2\lambda t} \sin^2(\mu t) \\ &= \mu e^{2\lambda t} (\cos^2(\mu t) + \sin^2(\mu t)) \\ &= \mu e^{2\lambda t}, \end{aligned}$$

so, $W[u, v] \neq 0$ if $\mu \neq 0$. Therefore, u and v form a fundamental set of solutions if $\mu \neq 0$. Notice that if $\mu = 0$, then $r_1 = \lambda$ and $r_2 = \lambda$, so we have real repeated roots. We will return to this case later, but when the characteristic equation has complex roots, we see that the general solution of the differential equation is

$$y(t) = c_1 e^{\lambda t} \cos(\mu t) + c_2 e^{\lambda t} \sin(\mu t).$$

Consider the following initial value problem

$$y'' + y' + 9.25y = 0, \quad y(0) = 2, \quad y'(0) = 0.$$

The characteristic equation is

$$p(r) = r^2 + r + 9.25,$$

and so

$$\begin{aligned} r &= \frac{-1 \pm \sqrt{1 - 37}}{2} \\ &= \frac{-1 \pm 6i}{2} \\ &= -\frac{1}{2} \pm 3i. \end{aligned}$$

Thus, our general solution is

$$y = c_1 e^{-\frac{1}{2}t} \cos(3t) + c_2 e^{-\frac{1}{2}t} \sin(3t).$$

Now, we use the initial conditions to determine c_1 and c_2 . We have

$$\begin{aligned} 2 &= y(0) \\ &= c_1, \end{aligned}$$

so

$$y = 2e^{-\frac{1}{2}t} \cos(3t) + c_2 e^{-\frac{1}{2}t} \sin(3t).$$

Next,

$$y' = -e^{-\frac{1}{2}t} \cos(3t) - 6e^{-\frac{1}{2}t} \sin(3t) - \frac{c_2}{2} e^{-\frac{1}{2}t} \sin(3t) + 3c_2 e^{-\frac{1}{2}t} \cos(3t),$$

so

$$\begin{aligned} 0 &= y'(0) \\ 0 &= -1 + 3c_2 \\ \frac{1}{3} &= c_2. \end{aligned}$$

Thus, the solution to the initial value problem is

$$y = 2e^{-\frac{1}{2}t} \cos(3t) + \frac{1}{3} e^{-\frac{1}{2}t} \sin(3t).$$

Notice that the solution oscillates with a decaying amplitude, and $\lim_{t \rightarrow \infty} y(t) = 0$.