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1 Repeated Roots

Our roots of the characteristic equation are

. —b+Vb? — dac
n 2a ’

and we now consider the case where b?> — 4ac = 0, or r = —%. We have real repeated roots, so we only have the solution

_b
y1=e 3at,

What about the second solution? We know that if y; is a solution, then ys = cy; is also a solution, but we need y; and yo to
be linearly indepedent so that they form a fundamental set of solutions. Let us extend this idea by considering yo = v(t)y;
where v(t) is a to-be-determined function. For y, to be a solution, it needs to satisfy the differential equation. We have

vy =0 (t)y1 + v(t)y,

and
i = 0" (O + 20 (2) + (0

Now, using our results in the differential equation, we have

ayy + by + ey = a (V" L)y + 20" (t)y) +o(t)y)) + b (V' )y +v(t)yy) + cv(t)y
= av” (t)y1 4+ v'(t)(2ay) + by1) + v(t)(ayy + by) + cy1)
= av" (t)y1 4+ v'(t)(2ay] + byr),

where the last line follows from y; being a solution to the differential equation. Now, we know y; = e_%t, SO

b
" O+ (020 + b) = (e 1) (20 (g ) e g v
a

2t 1

= ae 20" (¢).

We require
ae~ 2" () = 0

for y, to be a solution, so we see that we must have that v”(t) = 0. Therefore, v(t) = c5t + c4, SO
Y2 = (cat +ca) y1-
Thus, our general solution is of the form

Yy = c1y1 + ety

2 Reduction of Order
Consider the second-order differential equation
y" +p(t)y +a(t)y =0,
and suppose we know y1(t) is a solution. Following the same idea as in the previous section, let yo = v(t)y1(t). Then
Yy = v'y1 +vyy
and

yy ="y V'Y + 'y +oyf
= 0"y + 20'y] +vyy.
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Now, using these results in the differential equation, we get

Y+ )y +a(t)y = 0"y + 20"y + vyl +p(t) (Vv +vyh) + q(t)o(t)yi(t)
= 0"y + 0" (291 +p()yr) +o (¥ +p)y) +a(t)yr)
=v"y1 + 0 (2y) + p(t)y1) ,
where the last line follow from y; being a solution. We now arrive at a differential equaiton for v,
y1v” + (2y1 + py1)v’ = 0.

Note that y; is known, so the second-order differential equation for v is really a first-order differential equation for v’. Let
w = ', so that we get
yiw' + (245 + py1)w = 0.

Notice that this differential equation is separable, so we can determine w. Once we acquire w, we can find v by integrating
w.
Suppose y; =t~ is a solution of
2%y + 3ty —y =0, t>0.

Find a fundamental set of solutions. Let yo = v(¢)t~1. Then,
yh =v't7t — vt
and
g ="t =t =t 4 2073
=ot7 — 20t 4 20t 73,
Now, plugging into the differential equation,

2%y + 3tyh —yo = 267 (V7T — 20/t 72 4 20t73) 4 3t (Vi — 0t %) —wt 7!
= 20"t —dv' + 4ot + 30" — vt — w7t

="t -7,
so our differential equation for v’ is
20"t — v = 0.
Let w = v’. Then,
2wt —w =0
w
/
w = —
2t
w1
w2t
d 1

w = cqer ™t
1
w = cqe™??
1
w = cy4t2.
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Now, w = v/, so
v = eyt
/v’ dt = /c4t% dt
u(t) = st + c.
Therefore,
Y2 = v
2 -1
= <C5t2 —+ 06) t
1 -1
=c5t2 +ct™ 7,

so our general solution is
_ 1
Yy = cit ! + cot2.

Finally, let us check that we indeed have a fundamental set of solutions. The Wronskian is
Y1 Y2
v Y
-

Wly1, y2)(t) =

so we see that Wy, ya](t) # 0 for t > 0. Thus, y; =t~ and y, = t2 do indeed form a fundamental set of solutions.



