Benjamin Godkin MAT 22B Lecture 3: Separable Differential Equations and Modeling August 5, 2022

1 Separable Differential Equations

Consider the general first order ODE

dy

L = f(x,

A C)
with initial condition y(zg) = yo. Suppose that we may write f as the product of two functions ¢g(z) and h(y). That is,
suppose we can separate f into two functions such that one of the functions only depends on x, and the other function only

depends on y. Then, we have that

dy
dy
7 = 9@)h(y)
1 dy
1 dy
Now, let G'(z) = —g(x) and H'(y) = ﬁ Then, we have
dy
! H/ A
G'(z) + H'(y) 7~ =0,
and from the chain rule, we see that
d _ 104y
(Gl + Hly) = G () + H'(y) 5.
Therefore,
dy
!/ H/ 7 _
G/ () + H ()2 =0
d
il o —
L (Gla) + H(y) =0
d
J— H =
[ 4 (6@ + Hw) do= [0ds

Gx)+ H(y)—C =0,

and so our solution is

G(x)+H(y) =C.

Now, if we are given an initial condition y(zg) = yo, we see that

G(wo) + H(yo) = C,

o
G(x) + H(y) = G(zo) + H(yo)
G(x) = G(xo) + H(y) — H(yo) = 0
x y
/ G'(s) ds —|—/ H'(s) ds = 0.
Zo Yo
Now, recalling that G'(z) = —g(x) and H'(y) = ﬁ, we arrive at our solution

/z (s)ds+ [ —— ds—0
—g(s s+/ ——as =10,
xo yoh(s)

which is an implicit representation of the solution. The final steps are to the perform the integrals and solve for y in terms
of x.



Benjamin Godkin MAT 22B Lecture 3: Separable Differential Equations and Modeling August 5, 2022

Note: Often, determining an explicit formula is impossible, but you can use numerical methods to find approximate values
of y for given values of z.
Now, let us solve the initial value problem

dy_4x—x3

— = — 0)=1.
e y(0)
We see that the differential equation is separable since
4 — 23
W = f(z)h(y),
where 1
— 3 —
Now,
d
(4+y%) % =dr — 23

d (Y
— 4+ 3 ds=4x — 23
1

dx

d [
/—/ 4+53dsdx:/4x—x3dx

dz Jq

Y 422 ot
44 83ds=— " +C
/1 + s5° ds 5 4+
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=22 -

4
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4 Z
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x
C
1 4 i

4 4
16y + y* — 17 = 822 — z* + C.

4 1 4
4y+y<4+>2x2$4+0

Now, our initial condition informs us that y(0) = 1, so

16+1-17=C
C=0.

Thus, our solution to the initial value problem is
16y + y* = 822 — 2t + 17.

We are left with an implicit representation of our solution which makes sense for all values of x, but for what values of x is

this solution valid? Examining the differential equation, we see that the derivative blows up (‘%‘ — oo) when 4 +y* =0

ory = (—4)%. The corresponding values of x are solutions to

Wl

16(—4)5 + (—4)3 = 82% — 2* + 17,

and so z ~ +3.35. Therefore, the domain of validity of the differential equation is z € [—3.35, 3.35].

2 Modeling with First-Order Differential Equations

Our motivation behind studying differential equations comes from their ability to model the physical phonomena that interest
us. Our specializations vary, but the basic principles behind the construction of mathematical models follows the same ideas
for each of us:
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1. Construct the model
2. Analyze the model
3. Compare the model with our experiment or observation of interest

Constructing the model requies us to hypothesize about how our observations can be explained. Once we have built a
model, we hope to analyze this model using the techniques we will study in this course. We can attempt to solve our governing
equations (analytically or numerically), or we may attempt to gain qualitative insight about the predicted behavior. Once
we understand how our model works, we then examine whether our model and observations align. If they do, then great! If
they do not, we review the assumptions we made and see how we can improve our model to coincide with our experiment.

We will now construct a model using a first-order differential equation, and we will leave parameters in our differential
equation, so that we may tune the model to our observations or test other hypothetical situations.

Lake Shasta in northern California is the state of California’s largest reservoir, and it is formed by the Shasta Dam on
the Sacramento river. We will create a model for the volume of water in Lake Shasta. Let V(¢) be the volume of water in
the lake at time ¢, and we suppose that the volume of water in the lake is not constant. Let 7 (¢) be the inflow and r3(t) the

outflow. Then,
av

e r1(t) — ra(t).
How can we model r(t)?
e rain fall
e snow melt
We have not yet established a time scale, so let us choose the time scale to be years. Then,

r1(t) = cos(2nt)

gives us the desired shape for the inflow. Note that t = 1 is March of year 1, t = 2 is March of year 2, and so on. Next, we
do not want negative flow, so let us add 1 to r1(¢),

r1(t) = cos(2wt) + 1.

How should we model the outflow? For now, let us set ra(t) = ¢;. That is, there is a constant flow out of the lake. What
are some potential problems we need to keep in mind when we choose ¢;?

e If ¢ is too large, the lake could empty.
e If ¢y is too small, the lake could overflow.
What about initial conditions? The lake began storing water in 1944, so if we let ¢ = 0 correspond to March 1944, then

our initial condition is V' (0) = 0. Thus, we have the initial value problem

av
e cos(2mt) +1—¢1, V(0)=0.

Now, we solve the initial value problem. We have

/%dt:/cos(%rt)—l—l—cl dt

1
V(t) = Py sin(2nt) + ¢ — 1t + co.

Now, from the initial condition, we have
0=V(0) = co.

Therefore, the solution to the initial value problem is
1
V(t) = — sin(27t t—cit.
(t) 5 sin(2nt) + ¢t — ¢

We can find suitable values for ¢; by considering Viax and V. That is, it may be undesirable to have the lake overflow or
completely empty. You should check whether we can find ¢; so that the lake does not flow over the top of the dam.



