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1 Numerical Approxmations: Euler’s Method

We have seen a few examples of first order differential equations that we can solve symbolically, but more often than not, we
cannot solve the differential equation “by hand.” We know that the IVP

dy

dt
= f(t, y), y(t0) = y0

has a unique solution y = φ(t) if f and ∂f
∂y are continuous, so how can we “see” the solution?

One method is to draw a direction field and sketch some solution curves. This gives us good qualitative results, but we
may want more concrete quantitative results. When we draw solution curves, what are we doing? This is exactly the idea
behind the tangent line method or Euler’s method!

Consider the IVP
dy

dt
= f(t, y), y(t0) = y0.

The solution passes through (t0, y0), and the slope at (t0, y0) is f(t0, y0). Therefore, the tangent line to the solution at
(t0, y0) is

y = y0 + f(t0, y0)(t− t0),

and as long as we stay close to t = t0, this is a good approximation.
Say we want a tangent line approximation at t = t1. Let’s use the tangent line at (t0, y0) to approximate y1, so

y1 = y0 + f(t0, y0)(t1 − t0).

Next, we want to find (t2, y2), so using the tangent line at (t1, y1), we have

y2 = y1 + f(t1, y1)(t2 − t1),

and so
yn+1 = yn + f(tn, yn)(tn+1 − tn).

This procedure produces a sequence y0, y1, . . . at t0, t1, . . . which gives an approximation to the solution.
If we assume a uniform step size h between t0, t1, t2, . . . , then tn+1 = tn + h, so

yn+1 = yn + hf(tn, yn).

Euler’s method is a sequence of tedious computations, so rather than doing this method by hand, we will ask a computer to
do the computations for us.

The numerical method above is called (forward/explicit) Euler’s method. There is also what’s called backward/implicit
Euler’s method. Instead of evaluating f(t, y) at the current value (tn, yn), we evaluate f at (tn+1, yn+1). Then, our method
becomes

yn+1 = yn + hf(tn+1, yn+1).

For a specific funciton f , we hope to rearrange the equation so that we may explicitly write yn+1 in terms of yn, h, and tn+1.
Set up the Euler iteration scheme for the IVP

dy

dt
= t2 + 5y, y(0) = 1.

Explicit:

yn+1 = yn + hf(tn, yn)

= yn + h(t2n + 5yn)

= yn(1 + 5h) + ht2n.
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Implicit:

yn+1 = yn + hf(tn+1, yn+1)

yn+1 = yn + h(t2n+1 + 5yn+1)

yn+1(1− 5h) = yn + ht2n+1

yn+1 =
yn + ht2n+1

1− 5h

yn+1 =
yn + h(tn + h)2

1− 5h
.

2 The Existence and Uniqueness Theorem

Theorem. If f and ∂f
∂y are continuous in a rectangle R : |t| ≤ a, |y| ≤ b, then there is some interval |t| ≤ h ≤ a in which

there exists a unique solution y = φ(t) of the initial value problem

y′ = f(t, y), y(0) = 0.

Note that if we have the initial value problem

y′ = f(t, y), y(t0) = y0,

we can make a change of variables so that the initial point (t0, y0) is the origin.
Now, we will examine elements of tools used to prove the existence and uniqueness theorem. Suppose y = φ(t) satisfies

the initial value problem. Then f(t, y) = f(t, φ(t)), and we see that we have written f so that is only depends on t. Now,

y′ = f(t, y)

y′ = f(t, φ(t))∫ t

0

y′ dt =

∫ t

0

f(s, φ(s)) ds

y(t)− y(0) =

∫ t

0

f(s, φ(s)) ds

y(t) =

∫ t

0

f(s, φ(s)) ds.

The expression for y(t) at which we have arrived involves the unknown function φ, and it is called an integral equation. The
important point is that the integral equation and initial value problem are equivalent.

2.1 Picard’s Iteration Method (Method of Successive Approximations)

We will now examine Picard iterates which are a method for showing that the integral equation has a unique solution. We
will generate a sequence of functions {φn(t)} as follows:

1. Choose φ0. The simplest choice is φ0(t) = 0.

2. We get φ1 by using φ0 in the integral equation

φ1(t) =

∫ t

0

f(s, φ0(s)) ds.

3. We get φ2 by using φ1

φ2(t) =

∫ t

0

f(s, φ1(s)) ds,

and so on. We get φn by the expression

φn(t) =

∫ t

0

f(s, φn−1(s)) ds.
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We now have a sequence of functions, and each function in the sequence satisfies the initial condition, but they may not
satisfy the differential equation. If at some point, say n = k, we have φk+1(t) = φk(t), then φk is a solution of the integral
equation.

Now, to prove the existence and eniqueness theorem, we need to know:

1. Do all members of {φn} exist?

2. Does {φn} converge?

3. What are the properties of the limit function?

4. Is this the only solution?

2.2 1. Do all members of {φn} exist?

f and ∂f
∂y are continuous in the rectangle R : |t| ≤ a, |y| ≤ b, so the danger is that y = φk(t) may be outside of R. We need

to restrict t to an interval smaller than |t| ≤ a. Since f is continuous on a closed, bounded region, there exists a constant
M > 0 such that

|f(t, y)| ≤M

for (t, y) ∈ R. Now,
φ′
k+1 = f(t, φk) ≤M,

so the point (t, φk+1(t)) ∈ R. Therefore (t, φk+1(t)) ∈ R as long as |t| ≤ b
M . Choose h = min

{
a, b

M

}
.

2.3 Does {φn} converge?

We see that
φn(t) = φ1 + (φ2 − φ1) + · · ·+ (φn − φn−1)

is the partial sum of the series

φ1 +

∞∑
k=1

(φk+1 − φk).

Therefore, if the series converges, then the sequence {φn} converges and we let

φ(t) = lim
n→∞

φn(t).

2.4 What are the properties of the limit function?

We want to know if φ is continuous. If each φn is continuous and {φn} “converges uniformly,” then φ is continuous. We
have

φn+1(t) =

∫ t

0

f(s, φn(s)) ds

and so

φ(t) = lim
n→∞

∫ t

0

f(s, φn(s)) ds

=

∫ t

0

lim
n→∞

f(s, φn(s)) ds

=

∫ t

0

f(s, lim
n→∞

φn(s)) ds

=

∫ t

0

f(s, φ(s)) ds.
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2.5 Is this the only solution?

Suppose y1 = φ(t) and y2 = ψ(t) are both solutions. Then

|y1 − y2| = |φ(t)− ψ(t)|

=

∣∣∣∣∫ t

0

f(s, φ(s)) ds−
∫ t

0

f(s, ψ(s)) ds

∣∣∣∣
=

∣∣∣∣∫ t

0

f(s, φ(s))− f(s, ψ(s)) ds

∣∣∣∣
≤

∫ t

0

|f(s, φ(s))− f(s, ψ(s))| ds

≤
∫ t

0

L |φ(s)− ψ(s)| ds

for some constant L (Lipschitz consant). Let

A(t) =

∫ t

0

|φ(s)− ψ(s)| ds.

Then, A(0) = 0, A(t) ≥ 0 for t ≥ 0, and
A′(t) = |φ(t)− ψ(t)| .

Now,

|φ(t)− ψ(t)| ≤ L

∫ t

0

|φ(s)− ψ(s)| ds,

so

A′(t) ≤ LA(t)

A′(t)− LA(t) ≤ 0.

Now, multiplying by e−Lt, we get
d

dt

(
e−LtA(t)

)
≤ 0

and so
e−LtA(t) ≤ 0.

Hence,
A(t) ≤ 0.

We now have that A(0) = 0, A(t) ≥ 0 for t ≥ 0 and A(t) ≤ 0 for t ≥ 0, so we must have that A(t) = 0 for t ≥ 0. Hence,
A′(t) = 0, so

|φ(t)− ψ(t)| = 0.

Ergo, φ(t) = ψ(t) for t ≥ 0, and so the solution φ(t) is unique.
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