MAT 22B Lecture 7: Solving the Second-Order Linear Homogeneous Constant Coefficient Equation,
Benjamin Godkin the Homogeneous Equation and Wronskian, and Complex Roots August 15, 2022

1 Homogeneous Differential Equations with Constant Coefficients

Consider
ay” + by’ +ey =0,

where a, b, and ¢ are given constants. Recall that we have already seen how to solve the differential equation! Solving the
second-order linear constant coefficient homogeneous differential equation relies on two key ideas: a good ansatz and linearity.

1.1 Idea I: Ansatz and the Characteristic Equation
Suppose y = e is a solution to the differential equation. Then
ay" + by' +ey=a (ert)" +b (ert)’ + cem
= ar?e"™ + bre"t + ce™t

=et (ar2 + br + c) ,

and so we want
et (ar2 + br + c) =0.

Now, e™ # 0, so we require
ar? +br+c¢=0.

This equation is called the characteristic equation of the differential equation and has two roots, 71 and r5. Depending on
the constants a, b, and ¢, we may encounter roots which are real and distinct, real and repeated, or complex conjugates. For
now, let us assume 7 and r, are distinct real roots. Then,

and

are both solutions to the differential equation.

1.2 Idea II: Linearity
If y1 and ys are solutions of the differential equation, then y = ¢1y1 + coys solves the differential equation. Why? We see that
ay’ + by +cy = a(ciyr + caya)” +b(c1yr + cay2) + c(cryr + coyo)
= ac1yy + beryy + ceryr + acayy + beays + ceays

=c (ar% +bry+c)et + o (ar% +bry + c) e
= 07

since r; and 7y are roots of p(r) = ar? + br + c.

1.3 The Initial Value Problem

We have confirmed that
y(t) = cre™" + cpe™!

solves the differential equation, and we call this the general solution. We obtain a specific solution to the initial value problem
by determining the constants ¢; and ¢, using the initial values

y(to) = Yo

and
Y (to) = Yo-
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Consider the initial value problem
4y’ =8y’ +3y=0, y(0)=2, ' (0)=5.

First, the characteristic equation is
p(r) = 4r? — 8r + 3.

Next, we find the roots of p(r),

4r* —8r+3=0
(2r —1)(2r —3) =0,

and so r; = % and 7y = % Thus, our general solution is

3t 1t
Yy = c1e2” + coe2”.

Now, we determine ¢; and ¢ using the initial conditions. We have

2=1y(0)
=c1 + ¢,
o)
Cc1 = 2 — Ca.

We now have that , )
y=(2—co)e2! 4 cye2?,

SO

—_

3
Yy = 5(2 — cz)e%t + fcze%t.

[\)

Using the second initial condition, we have

1 /
Z =40
5 =4 (0)
1 3 1
5 = 5(2 — 62) —+ 562
1 :3(2762)4*62
-5 = —262
5
C2 57
and so
c1 = 2 — C2
2
1
=3
Thus, our solution to the initial value problem is
Yy = _%e%t —+ geét.
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1.4 Long-time Behavior
Our general solution to the second-order linear constant coefficient differential equation is
y = Clerlt + Cgerzt.

What happens as t — 0o? We see that the behavior of the solution as ¢ — oo depends on the roots of the characteristic
equation. We will return to this question after figuring out how our general solution presents itself when we come across
complex and real repeated roots.

2 Solutions of the Homogeneous Equations and the Wronskian

Let p and ¢ be continuous functions on an open interval I. Consider the differential operator L defined by

Llp] = ¢" + po’ + qo,

where ¢ is some function. Here, L operates on . That is to say, ¢ acts as the input to the operator L. The value of L[y]
at a point ¢ is
Lp)(t) = ¢"(t) + p(t)¢'(t) + a(t)o(t).

We will examine the second-order linear differential equation

with initial conditions
y(to) = vo. ¥ (to) = yo-

We want to know whether the initial value problem has a solution, whether it has more than one solution and how solutions
are structured and formed.

Theorem. (Ezistence and Uniqueness) Let p, g, and q be continuous in an open interval I containing to. Then the initial
value problem

Y +pt)y +aqt)y =g(t), y(to) =wo, ¥'(to) =0,

has a unique solution y = o(t) in the interval I.
Theorem. If y; and yo are solutions to the differential equation

Llyl =y" +pt)y" +q(t) =0,
then the linear combination ciyy + cay2 18 also a solution for any c1 and cs.

The proof of the previous theorem follows from the linearity of L. Now, when can ¢; and ¢y be chosen to satisfy the
initial conditions? We require

c1y1(to) + c2y2(to) = yo
c1yy (to) + c2ys(to) = Yo,

i w2 - 1)

When does this system have a unique solution? Let

v —as ([} ] 2] - [4]).

C1

or in matrix form

If W(to) # 0, then we are guaranteed a unique solution [ ] , and W is called the Wronskian of the solutions y; and ys.

C2
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Theorem. Suppose y; and yo are two solutions of

Llyl =y" +pt)y' +a(t)y =0.
It is possible to choose ¢q and co so that
y = cy1(t) + can(t)
satisfies the differential equation and initial conditions if and only if the Wronskian
Wy, y2] = 19z — y1v2
18 not zero at tg.

Consider the differential equation
y" + 5y + 6y = 0.

Find the Wronskian of y; and y,. The characteristic equation is

p(r) =r*+5r +6

=(r+3)(r+2),
so our roots are r; = —3 and ro = —2. Therefore, our solutions are

g = e 2
and

yp = e %
Now,

o2t o3t

Wilyr, y2](t) = _9p—2t 3,3t

= —3e % 427

= —e "

We see that W{y1, y2](t) # 0 for all ¢, so any initial condition can be specified at any initial time ¢. The expression
y = c1yi(t) + caya(t)

is called the general solution of L[y] = 0, and y; and yo are said to form a fundamental set of solutions if their Wronskian is
nonzero for all ¢. Notice that we have a nonzero Wronskian if and only if y; and y» are linearly independent.
Show that y; = tz and Yo = % form a fundamental set of solutions of

2%y + 3ty —y=0, t>0.
First, we need to show that y; and y» satisfy the differential equation. Using y; in the differential equation, we have

22y + 3ty —yy = 262(t2)" + 3t(t2) — 2
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so 1 is a solution. Next, we use ys in the differential equation,

1\” 1\ 1
2%yl + Btyh — yp = 2t* (t) —|—3t( ) i

t
e 1Y 1\ 1
28 (=5 ) 3t - ) — 5

2 3 1
== — = — -

t3 t t
4 4
ot ot
= 0’

So yo is a solution. Now, we compute the Wronskian
1 1
t2 -
Wlyr,y2](t) = 1,-1 Y
2 12
=3 (_f2) — lféfl
2

B P
B 2
_ 3t—§

2

We see that Wy, y2](t) # 0 for ¢ > 0, so y; and yo form a fundamental set of solutions. Thus, the general solution to the
differential equation is

1 1
y(t) = et + c2y-

Theorem. Ify = u(t) + iv(t) is a complex-valued solution of L{p] = 0, then its real part w and imaginary part v are also
solutions.

The proof follows form the linearity of L, that L[y] = 0, and the fact that if a 4+ ib = 0, then a = 0 and b = 0.
Theorem. (Abel’s Theorem) If y; and yo are solutions of
Lly] =y" +pt)y' + q(t)y =0,
where p and q are continuous on I, then the Wronskain is
Wlyr, o) (t) = Ce™ J PO

where C' is a constant depending on y1 and y2, but not on t. W is either zero for all t in I or never zero in I.

3 Complex Roots of the Characteristic Equation
Our second-order constant coefficient homogeneous differential equation is

ay” + by’ +cy =0,
where a, b, and c are constants. The characteristic equation is

p(r) = ar® + br +c,

SO
. —b+Vb% — dac
o 2a ’
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What happens when b? — 4ac < 07 We have roots 71 and r, which are complex conjugates of each other
rE=A+1iu, To=A—1iLu,

where A and p are real numbers. Our solutions are

Y = e(A i)t

and

Yo = e(A—in)t.

What does Euler’s number raised to a complex power even mean?

3.1 Euler’s Formula

Recall the Taylor (Maclaurin) series for e* about ¢ = 0,

o0 tn
t _ N
€= Z n!
n=0
2 3
+t+ 5 + 3 +
Now,
it - (Zt)n
=3 !
n=0
1 U t4
=14+t - 5 ? - +
S ( )nth nt2n+1
—,;0 o Z (2n +1)!
= cos(t) + zsm(t).
Thus,

e’ = cos(t) + isin(t),
and this is called Euler’s formula. Now,

e i)t

vy =
_ ez\temt

= M (cos(ut) + i sin(ut))

and

(A—ip)t

Y2 =¢€
_ eAtefzp,t

— Mt (cos(ut) — isin(ut)),

where we recalled that sine is an odd function
sin(—t) = —sin(t),

and cosine is an even function
cos(—t) = cos(t).



