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1 Homogeneous Differential Equations with Constant Coefficients

Consider
ay′′ + by′ + cy = 0,

where a, b, and c are given constants. Recall that we have already seen how to solve the differential equation! Solving the
second-order linear constant coefficient homogeneous differential equation relies on two key ideas: a good ansatz and linearity.

1.1 Idea I: Ansatz and the Characteristic Equation

Suppose y = ert is a solution to the differential equation. Then

ay′′ + by′ + cy = a
(
ert

)′′
+ b

(
ert

)′
+ cert

= ar2ert + brert + cert

= ert
(
ar2 + br + c

)
,

and so we want
ert

(
ar2 + br + c

)
= 0.

Now, ert ̸= 0, so we require
ar2 + br + c = 0.

This equation is called the characteristic equation of the differential equation and has two roots, r1 and r2. Depending on
the constants a, b, and c, we may encounter roots which are real and distinct, real and repeated, or complex conjugates. For
now, let us assume r1 and r2 are distinct real roots. Then,

y1 = er1t

and
y2 = er2t

are both solutions to the differential equation.

1.2 Idea II: Linearity

If y1 and y2 are solutions of the differential equation, then y = c1y1+ c2y2 solves the differential equation. Why? We see that

ay′′ + by′ + cy = a (c1y1 + c2y2)
′′
+ b (c1y1 + c2y2)

′
+ c (c1y1 + c2y2)

= ac1y
′′
1 + bc1y

′
1 + cc1y1 + ac2y

′′
2 + bc2y

′
2 + cc2y2

= c1
(
ar21 + br1 + c

)
er1t + c2

(
ar22 + br2 + c

)
er2t

= 0,

since r1 and r2 are roots of p(r) = ar2 + br + c.

1.3 The Initial Value Problem

We have confirmed that
y(t) = c1e

r1t + c2e
r2t

solves the differential equation, and we call this the general solution. We obtain a specific solution to the initial value problem
by determining the constants c1 and c2 using the initial values

y(t0) = y0

and
y′(t0) = y′0.
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Consider the initial value problem

4y′′ − 8y′ + 3y = 0, y(0) = 2, y′(0) =
1

2
.

First, the characteristic equation is
p(r) = 4r2 − 8r + 3.

Next, we find the roots of p(r),

4r2 − 8r + 3 = 0

(2r − 1)(2r − 3) = 0,

and so r1 = 3
2 and r2 = 1

2 . Thus, our general solution is

y = c1e
3
2 t + c2e

1
2 t.

Now, we determine c1 and c2 using the initial conditions. We have

2 = y(0)

= c1 + c2,

so
c1 = 2− c2.

We now have that
y = (2− c2)e

3
2 t + c2e

1
2 t,

so

y′ =
3

2
(2− c2)e

3
2 t +

1

2
c2e

1
2 t.

Using the second initial condition, we have

1

2
= y′(0)

1

2
=

3

2
(2− c2) +

1

2
c2

1 = 3(2− c2) + c2

−5 = −2c2

c2 =
5

2
,

and so

c1 = 2− c2

= 2− 5

2

= −1

2
.

Thus, our solution to the initial value problem is

y = −1

2
e

3
2 t +

5

2
e

1
2 t.

2



Benjamin Godkin
MAT 22B Lecture 7: Solving the Second-Order Linear Homogeneous Constant Coefficient Equation,

the Homogeneous Equation and Wronskian, and Complex Roots August 15, 2022

1.4 Long-time Behavior

Our general solution to the second-order linear constant coefficient differential equation is

y = c1e
r1t + c2e

r2t.

What happens as t → ∞? We see that the behavior of the solution as t → ∞ depends on the roots of the characteristic
equation. We will return to this question after figuring out how our general solution presents itself when we come across
complex and real repeated roots.

2 Solutions of the Homogeneous Equations and the Wronskian

Let p and q be continuous functions on an open interval I. Consider the differential operator L defined by

L[φ] = φ′′ + pφ′ + qφ,

where φ is some function. Here, L operates on φ. That is to say, φ acts as the input to the operator L. The value of L[φ]
at a point t is

L[φ](t) = φ′′(t) + p(t)φ′(t) + q(t)φ(t).

We will examine the second-order linear differential equation

L[φ](t) = 0,

with initial conditions
y(t0) = y0, y′(t0) = y0.

We want to know whether the initial value problem has a solution, whether it has more than one solution and how solutions
are structured and formed.

Theorem. (Existence and Uniqueness) Let p, g, and q be continuous in an open interval I containing t0. Then the initial
value problem

y′′ + p(t)y′ + q(t)y = g(t), y(t0) = y0, y′(t0) = y′0,

has a unique solution y = φ(t) in the interval I.

Theorem. If y1 and y2 are solutions to the differential equation

L[y] = y′′ + p(t)y′ + q(t) = 0,

then the linear combination c1y1 + c2y2 is also a solution for any c1 and c2.

The proof of the previous theorem follows from the linearity of L. Now, when can c1 and c2 be chosen to satisfy the
initial conditions? We require

c1y1(t0) + c2y2(t0) = y0

c1y
′
1(t0) + c2y

′
2(t0) = y′0,

or in matrix form [
y1(t0) y2(t0)
y′1(t0) y′2(t0)

] [
c1
c2

]
=

[
y0
y′0

]
.

When does this system have a unique solution? Let

W (t0) = det

([
y1(t0) y2(t0)
y′1(t0) y′2(t0)

] [
c1
c2

]
=

[
y0
y′0

])
.

If W (t0) ̸= 0, then we are guaranteed a unique solution

[
c1
c2

]
, and W is called the Wronskian of the solutions y1 and y2.
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Theorem. Suppose y1 and y2 are two solutions of

L[y] = y′′ + p(t)y′ + q(t)y = 0.

It is possible to choose c1 and c2 so that
y = c1y1(t) + c2y1(t)

satisfies the differential equation and initial conditions if and only if the Wronskian

W [y1, y2] = y1y
′
2 − y′1y2

is not zero at t0.

Consider the differential equation
y′′ + 5y′ + 6y = 0.

Find the Wronskian of y1 and y2. The characteristic equation is

p(r) = r2 + 5r + 6

= (r + 3)(r + 2),

so our roots are r1 = −3 and r2 = −2. Therefore, our solutions are

y1 = e−2t

and
y2 = e−3t.

Now,

W [y1, y2](t) =

∣∣∣∣ e−2t e−3t

−2e−2t −3e−3t

∣∣∣∣
= −3e−5t + 2e−5t

= −e−5t.

We see that W [y1, y2](t) ̸= 0 for all t, so any initial condition can be specified at any initial time t. The expression

y = c1y1(t) + c2y2(t)

is called the general solution of L[y] = 0, and y1 and y2 are said to form a fundamental set of solutions if their Wronskian is
nonzero for all t. Notice that we have a nonzero Wronskian if and only if y1 and y2 are linearly independent.

Show that y1 = t
1
2 and y2 = 1

t form a fundamental set of solutions of

2t2y′′ + 3ty′ − y = 0, t > 0.

First, we need to show that y1 and y2 satisfy the differential equation. Using y1 in the differential equation, we have

2t2y′′1 + 3ty′1 − y1 = 2t2(t
1
2 )′′ + 3t(t

1
2 )′ − t

1
2

= 2t2
(
1

2
t−

1
2

)′

+ 3t
1

2
t−

1
2 − t

1
2

= 2t2
(
−1

4

)
t−

3
2 +

3

2
t
1
2 − t

1
2

= −1

2
t
1
2 +

1

2
t
1
2

= 0,
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so y1 is a solution. Next, we use y2 in the differential equation,

2t2y′′2 + 3ty′2 − y2 = 2t2
(
1

t

)′′

+ 3t

(
1

t

)′

− 1

t

= 2t2
(
− 1

t2

)′

+ 3t

(
− 1

t2

)
− 1

t

= 2t2
2

t3
− 3

t
− 1

t

=
4

t
− 4

t
= 0,

so y2 is a solution. Now, we compute the Wronskian

W [y1, y2](t) =

∣∣∣∣ t
1
2

1
t

1
2 t

− 1
2 − 1

t2

∣∣∣∣
= t

1
2

(
−t−2

)
− 1

2
t−

1
2 t−1

= −t−
3
2 − 1

2
t−

3
2

= −3

2
t−

3
2 .

We see that W [y1, y2](t) ̸= 0 for t > 0, so y1 and y2 form a fundamental set of solutions. Thus, the general solution to the
differential equation is

y(t) = c1t
1
2 + c2

1

t
.

Theorem. If y = u(t) + iv(t) is a complex-valued solution of L[φ] = 0, then its real part u and imaginary part v are also
solutions.

The proof follows form the linearity of L, that L[y] = 0, and the fact that if a+ ib = 0, then a = 0 and b = 0.

Theorem. (Abel’s Theorem) If y1 and y2 are solutions of

L[y] = y′′ + p(t)y′ + q(t)y = 0,

where p and q are continuous on I, then the Wronskain is

W [y1, y2](t) = Ce−
∫
p(t) dt,

where C is a constant depending on y1 and y2, but not on t. W is either zero for all t in I or never zero in I.

3 Complex Roots of the Characteristic Equation

Our second-order constant coefficient homogeneous differential equation is

ay′′ + by′ + cy = 0,

where a, b, and c are constants. The characteristic equation is

p(r) = ar2 + br + c,

so

r =
−b±

√
b2 − 4ac

2a
.
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What happens when b2 − 4ac < 0? We have roots r1 and r2 which are complex conjugates of each other

r1 = λ+ iµ, r2 = λ− iµ,

where λ and µ are real numbers. Our solutions are
y1 = e(λ+iµ)t

and
y2 = e(λ−iµ)t.

What does Euler’s number raised to a complex power even mean?

3.1 Euler’s Formula

Recall the Taylor (Maclaurin) series for et about t = 0,

et =

∞∑
n=0

tn

n!

= 1 + t+
t2

2
+

t3

3!
+ · · · .

Now,

eit =

∞∑
n=0

(it)n

n!

= 1 + it− t2

2!
− it3

3!
+

t4

4!
+ · · ·

=

∞∑
n=0

(−1)nt2n

(2n)!
+ i

∞∑
n=0

(−1)nt2n+1

(2n+ 1)!

= cos(t) + i sin(t).

Thus,
eit = cos(t) + i sin(t),

and this is called Euler’s formula. Now,

y1 = e(λ+iµ)t

= eλteiµt

= eλt (cos(µt) + i sin(µt))

and

y2 = e(λ−iµ)t

= eλte−iµt

= eλt (cos(µt)− i sin(µt)) ,

where we recalled that sine is an odd function
sin(−t) = − sin(t),

and cosine is an even function
cos(−t) = cos(t).
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