
Benjamin Godkin MAT 22B Lecture 8: Repeated Roots and Reduction of Order August 17, 2022

1 Complex Roots: The General Solution

Recall that if y = u+ iv is a solution, then u and v are each solutions, so u = eλt cos(µt) and v = eλt sin(µt) are our solutions.
The Wronskian is

W [u, v] =

∣∣∣∣ eλt cos(µt) eλt sin(µt)
λeλt cos(µt)− µeλt sin(µt) λeλt sin(µt) + µeλt cos(µt)

∣∣∣∣
= λe2λt cos(µt) sin(µt) + µe2λt cos2(µt)− λe2λt sin(µt) cos(µt) + µe2λt sin2(µt)

= µe2λt
(
cos2(µt) + sin2(µt)

)
= µe2λt,

so, W [u, v] ̸= 0 if µ ̸= 0. Therefore, u and v form a fundamental set of solutions if µ ̸= 0. Notice that if µ = 0, then r1 = λ
and r2 = λ, so we have real repeated roots. We will return to this case later, but when the characteristic equation has
complex roots, we see that the general solution of the differential equation is

y(t) = c1e
λt cos(µt) + c2e

λt sin(µt).

Example 1.1. Determine the solution to the following initial value problem

y′′ + y′ + 9.25y = 0, y(0) = 2, y′(0) = 0.

The characteristic equation is
p(r) = r2 + r + 9.25,

and so

r =
−1±

√
1− 37

2

=
−1± 6i

2

= −1

2
± 3i.

Thus, our general solution is
y = c1e

− 1
2 t cos(3t) + c2e

− 1
2 t sin(3t).

Now, we use the initial conditions to determine c1 and c2. We have

2 = y(0)

= c1,

so
y = 2e−

1
2 t cos(3t) + c2e

− 1
2 t sin(3t).

Next,

y′ = −e−
1
2 t cos(3t)− 6e−

1
2 t sin(3t)− c2

2
e−

1
2 t sin(3t) + 3c2e

− 1
2 t cos(3t),

so

0 = y′(0)

0 = −1 + 3c2

1

3
= c2.

Thus, the solution to the initial value problem is

y = 2e−
1
2 t cos(3t) +

1

3
e−

1
2 t sin(3t).

Notice that the solution oscillates with a decaying amplitude, and limt→∞ y(t) = 0.

1



Benjamin Godkin MAT 22B Lecture 8: Repeated Roots and Reduction of Order August 17, 2022

2 Repeated Roots

Our roots of the characteristic equation are

r =
−b±

√
b2 − 4ac

2a
,

and we now consider the case where b2 − 4ac = 0, or r = − b
2a . We have real repeated roots, so we only have the solution

y1 = e−
b
2a t.

What about the second solution? We know that if y1 is a solution, then y2 = cy1 is also a solution, but we need y1 and y2 to
be linearly indepedent so that they form a fundamental set of solutions. Let us extend this idea by considering y2 = v(t)y1
where v(t) is a to-be-determined function. For y2 to be a solution, it needs to satisfy the differential equation. We have

y′2 = v′(t)y1 + v(t)y′1

and
y′′2 = v′′(t)y1 + 2v′(t)y′1 + v(t)y′′1 .

Now, using our results in the differential equation, we have

ay′′2 + by′2 + cy2 = a (v′′(t)y1 + 2v′(t)y′1 + v(t)y′′1 ) + b (v′(t)y1 + v(t)y′1) + cv(t)y1

= av′′(t)y1 + v′(t)(2ay′1 + by1) + v(t)(ay′′1 + by′1 + cy1)

= av′′(t)y1 + v′(t)(2ay′1 + by1),

where the last line follows from y1 being a solution to the differential equation. Now, we know y1 = e−
b
2a t, so

av′′(t)y1 + v′(t)(2ay′1 + by1) = av′′(t)e−
b
2a t + v′(t)

(
2a

(
− b

2a

)
e−

b
2a t + be−

b
2a t

)
= ae−

b
2a tv′′(t).

We require

ae−
b
2a tv′′(t) = 0

for y2 to be a solution, so we see that we must have that v′′(t) = 0. Therefore, v(t) = c3t+ c4, so

y2 = (c3t+ c4) y1.

Thus, our general solution is of the form
y = c1y1 + c2ty1.

3 Reduction of Order

Consider the second-order differential equation

y′′ + p(t)y′ + q(t)y = 0,

and suppose we know y1(t) is a solution. Following the same idea as in the previous section, let y2 = v(t)y1(t). Then

y′2 = v′y1 + vy′1

and

y′′2 = v′′y1 + v′y′1 + v′y′1 + vy′′1

= v′′y1 + 2v′y′1 + vy′′1 .
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Now, using these results in the differential equation, we get

y′′ + p(t)y′ + q(t)y = v′′y1 + 2v′y′1 + vy′′1 + p(t) (v′y1 + vy′1) + q(t)v(t)y1(t)

= v′′y1 + v′ (2y′1 + p(t)y1) + v (y′′1 + p(t)y′1 + q(t)y1)

= v′′y1 + v′ (2y′1 + p(t)y1) ,

where the last line follow from y1 being a solution. We now arrive at a differential equaiton for v,

y1v
′′ + (2y′1 + py1)v

′ = 0.

Note that y1 is known, so the second-order differential equation for v is really a first-order differential equation for v′. Let
w = v′, so that we get

y1w
′ + (2y′1 + py1)w = 0.

Notice that this differential equation is separable, so we can determine w. Once we acquire w, we can find v by integrating
w.

Example 3.1. Suppose y1 = t−1 is a solution of

2t2y′′ + 3ty′ − y = 0, t > 0.

Find a fundamental set of solutions. Let y2 = v(t)t−1. Then,

y′2 = v′t−1 − vt−2,

and

y′′2 = v′′t−1 − v′t−2 − v′t−2 + 2vt−3

= v′′t−1 − 2v′t−2 + 2vt−3.

Now, plugging into the differential equation,

2t2y′′2 + 3ty′2 − y2 = 2t2
(
v′′t−1 − 2v′t−2 + 2vt−3

)
+ 3t

(
v′t−1 − vt−2

)
− vt−1

= 2v′′t− 4v′ + 4vt−1 + 3v′ − 3vt−1 − vt−1

= 2v′′t− v′,

so our differential equation for v′ is
2v′′t− v′ = 0.

Let w = v′. Then,

2w′t− w = 0

w′ =
w

2t
w′

w
=

1

2t
d

dt
(lnw) =

1

2t∫
d

dt
(lnw) dt =

∫
1

2t
dt

lnw =
1

2
ln t+ c3

w = c4e
1
2 ln t

w = c4e
ln t

1
2

w = c4t
1
2 .
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Now, w = v′, so

v′ = c4t
1
2∫

v′ dt =

∫
c4t

1
2 dt

v(t) = c5t
3
2 + c6.

Therefore,

y2 = vy1

=
(
c5t

3
2 + c6

)
t−1

= c5t
1
2 + c6t

−1,

so our general solution is
y = c1t

−1 + c2t
1
2 .

Finally, let us check that we indeed have a fundamental set of solutions. The Wronskian is

W [y1, y2](t) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣
=

∣∣∣∣ t−1 t
1
2

−t−2 1
2 t

− 1
2

∣∣∣∣
=

1

2
t−

3
2 + t−

3
2

=
3

2
t−

3
2 ,

so we see that W [y1, y2](t) ̸= 0 for t > 0. Thus, y1 = t−1 and y2 = t
1
2 do indeed form a fundamental set of solutions.
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