1. Consider the following initial value problem

\[y' = (t - 1)^2(y - 2) - t + 1, \quad y(1) = 2. \]

(a) Transform the initial value problem so that the initial point is at the origin.
(b) Let \(\phi_n(t) \) be the iterates from the method of successive approximations. Assume \(\phi_0(t) = 0 \). Find \(\phi_n(t) \) for arbitrary values of \(n \).
(c) Plot \(\phi_n(t) \) for \(n = 1, 2, 3, 4 \). Determine whether the approximates appear to be converging.
(d) Show that the sequence \(\{\phi_n(t)\} \) converges.

2. Consider the initial value problem

\[y' = f(t, y), \quad y(0) = 0. \]

(a) Show that if \(\frac{\partial f}{\partial y} \) is continuous in a rectangle \(D \), then there is a constant \(K > 0 \) such that

\[|f(t, y_1) - f(t, y_2)| \leq K |y_1 - y_2| \]

for any \((t, y_1), (t, y_2) \in R \).
(b) Let \(\phi_n, \phi_{n-1} \) be two iterates from the method of successive approximations. Show that

\[|f(t, \phi_n(t)) - f(t, \phi_{n-1}(t))| \leq K|\phi_n(t) - \phi_{n-1}(t)|. \]
(c) Suppose

\[\phi(t) = \int_0^t f(s, \phi(s)) \, ds \]

and \(\psi(t) \) is another solution to the integral equation. Show that it must be the case that \(\phi(t) = \psi(t) \). That is, show that the solution to the integral equation is unique.

3. Solve the following finite difference equations in terms of an initial value \(y_0 \) and determine the behavior of the solution as \(n \to \infty \).

(a) \[y_{n+1} = \sqrt{\frac{n+3}{n+1}} y_n \]
(b) \[y_{n+1} = 0.5 y_n + 6 \]

4. Suppose you invest $1000 in the SPY ETF and you expect that the investment will return 8% compounded monthly, and suppose you continue investing $25 a month. How much do you expect your investment to be worth in 10 years?

5. Solve the following initial value problems and describe the behavior of the solution as \(t \to \infty \).

(a) \[y'' + 4y' + 3y = 0, \quad y(0) = 2, \quad y'(0) = -1 \]
(b) \[2y'' + y' - 4y = 0, \quad y(0) = 0, \quad y'(0) = 1 \]
(c) \[4y'' - y = 0, \quad y(-2) = 1, \quad y'(-2) = -1 \]

6. Consider the differential equation

\[ay'' + by' + cy = 0 \]

where \(a, b, \) and \(c \) are constants and \(a > 0 \). Determine conditions on \(a, b, \) and \(c \) so that the roots of the characteristic equation are:
(a) distinct and positive.
(b) distinct and negative.
(c) opposite signs.

For each case determine the behavior of the solution as $t \to \infty$.

7. Verify that y_1 and y_2 are solutions of the differential equation, and determine whether they constitute a fundamental set of solutions.

$$y'' - 2y' + y = 0, \quad y_1(t) = e^t, \quad y_2(t) = te^t.$$

8. Find the Wronskian of the two solutions of the differential equation

$$\cos(t)y'' + \sin(t)y' - ty = 0.$$

9. Prove the following statements:

(a) If y_1 and y_2 are zero at the same point in I, then they cannot be a fundamental set of solutions on I.

(b) If y_1 and y_2 have a common point of inflection t_0 in I, then they cannot be a fundamental set of solutions on I unless both p and q are zero at t_0.

10. Solve the initial value problems and determine the behavior of the solution as $t \to \infty$.

(a) $y'' + 4y = 0, \quad y(0) = 0, \quad y'(0) = 1$

(b) $y'' + y = 0, \quad y\left(\frac{\pi}{3}\right) = 2, \quad y'\left(\frac{\pi}{3}\right) = -4$

(c) $3u'' - u' + 2u = 0, \quad u(0) = 2, \quad u'(0) = 0$

11. An equation of the form

$$t^2 \frac{d^2y}{dt^2} + \alpha t \frac{dy}{dt} + \beta y = 0, \quad t > 0$$

where α and β are real constants is called an Euler equation.

(a) Using the change of variable $x = \ln t$, transform the differential equation into a constant coefficient differential equation.

(b) Use this change of variable to solve $t^2y'' + 3ty' - 3y = 0$.
