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Methodology

Multiscale Flow via Interface Models

* Action at many scales

* Direct numerical simulation is
computationally expensive

* Idea: decompose flow into simple
constituent parts

 e.g. transport, diffusion, shock
waves, contacts, acoustic waves,
flame fronts, etc.

* Model using interface methods




Interface Methods

Strengths and Weaknesses

* Fluid systems often dominated by
propagating waves and surfaces of
discontinuity.

* Interface methods offer geometric
flexibility, computational efficiency,
and concise representation.

* Less useful at scales where flow is
dominated by mixing or turbulence.




Incompressible Flow

Contact Discontinuities
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* Nonlocal effects of incompressible
flow recovered using boundary 07
integral methods. 06
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* We developed the z-model for 05
contact discontinuities in 2d & 3d. 04
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* Matches analytical and 03
experimental predictions for 02
Rayleigh-Taylor Instability (RTI).
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Rayleigh-Taylor instability (z-model with reconstructed density/velocity)



Mach 0.1 Mach 0.3
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Compressible Flow

Nonlinear Sound Waves 3 3|

* Novel geometric coordinates which

1F 1F

3.5 3.5°

align with propagating wave or

surface of discontinuity. : . . . o

* The wza-model for nonlinear ‘I Hach e ‘ Hach 09
sound waves in 2d.

» Extension to shock waves/vorticity
waves/contacts in progress

Sound wave emitted from moving object at various speeds (abc-model)
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The z-Model

(P. and Shkoller, JFM '23)

* Interface model for the interface
position and amplitude of vorticity.

* Models the deposition of vorticity
on density discontinuities:

Do  VpXVp
Dt 2

* Velocity reconstructed using
nonlocal Biot-Savart integral.
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z-model interface, Rayleigh-Taylor instability

with reconstructed velocity



Velocity Reconstruction

* An arbitrary velocity field # can be reconstructed from its vorticity @w = curl # and
compression y = div u:

u(x) = —

1 m w(x’) X (x — x') N x(xX)(x — x') g
41 J)) s

[ x = x| [ x = x|
* Given a vortex sheet at I'(7) in incompressible flow with amplitude of vorticity
w(x, 1), x € 1'(¢), the velocity is given by the Biot-Savart law,

| J"’ w(x', 1) X (x —x') JS(x)
r

u(x, 1) = —

4r ‘x-x’ﬁ
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Single-mode Rayleigh-Taylor instability Rising bubble interacting with unstable density interface
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5D Single-Mode RTI

y

( _ vluQ

~P
/'/

>

0.5

0.8
-0.6 -0.4

‘0 .2 0

05
0.2 0.4

x/A



Comparison With Experiments

Single-Mode RT Instability

* A standing wave is excited in a tank
containing two fluids, the heavier fluid
on the bottom.

* The tank is then accelerated
downward, so that the acceleration
points from the heavier fluid into the
lighter fluid.

* The resulting Rayleigh-Taylor
instability is photographed along the
tank’s diagonal using PLIF (planar laser
induced fluorescence).

Release Lk e Plexiglas Tank \ | 7
Mechanism ~_| | |} / )
B
5 ,
T ﬂ _ CCDCamera
/// | Guide Rail Accelerator
Test Sled Assembly / Assembly
Bl _ / W
T eight
' Housing
Winch
Shock L
Absorbers ~_
\\\~ \

—

Experimental setup of Waddell/Jacobs and Wilkinson/Jacobs



Diagonal cross-section, t/7 =0 Diagonal cross-section, t/7 = 0.21 Diagonal cross-section, t/7 = 0.42 Diagonal cross-section, t/7 = 0.63

e ] F | " | w

(diagonal distance) /A (diagonal distance) /A (diagonal distance) /A (diagonal distance)/A

Diagonal cross-section, ¢/7 = 0.83 Diagonal cross-section, t/7 = 1.04 Diagonal cross-section, t/7 = 1.25 Diagonal cross-section, t/7 = 1.45

r B TR ™y

Z/A

(diagonal distance) /A (diagonal distance) /A (diagonal distance) /A (diagonal distance) /A

Diagonal cross-section, t/7 = 1.66 Diagonal cross-section, t/7 = 2

Comparison of z-Model to
Experimental Data of Wilkinson/
Jacobs, Showing Diagonal
Cross-Section

Z/A

(diagonal distance) /A (diagonal distance) /A



Comparison With Experiments

. . GUIDE RODS—f=<—1- BACK LIGHTING
Rocket Rig Experiment — SCREEN
ROCKET MOTOR\\ gl?g'?g MOUNTING
accesnousrens—y | ) =

* Theory predicts that the RT mixing FeEREROnE ERS\\; man

layer grows quadratically with time: PTFE. BUSHES el wine prose

N\ b

* Experiments of Read and Youngs SUPPORT TUBE DISTANCE SCALE

found constant of proportionality

a ~ 0.06 or 0.07

* Model of Cabot/Cook & Ristorcelli/

FOAM CUSHION

Clark measures a dynamically:

a = h*/(4Agh) :

3
Fig. 1. Experimental apparatus.

60:8ms



Comparison With Experiments

Rocket Rig: Higher-Order z-model

Rocket ng 0.5 1 T 5 (h—hy) /A y

0.06(t/7)* o

We begin with randomized initial data

N
— 2ﬂi(k1S1+k2S2) zf“
Z3 = Re Z Ch, k€
kl,kzz_N

where the coefficients ¢; , are sampled
from a normal distribution.

We averaged the result Of 100 runs, Width of mixing layer, averaged over 100 runs. The mean is shown in red, and

. ’ the grey bands show one and two standard deviations. Here 4 is a characteristic
USlng parameters that matCh Read S length scale and 7 = (1/Ag)"? is the characteristic time scale. The simulations
Nal/ Pentane experlment. and the experiment were both run for 60ms, or approximately 2.77.



Comparison With Experiments
Tilted Rocket Rig

* This experiment is similar to the rocket rig,
but the tank is tilted at a slope of 1/10.

 Qur initial data has the form

= — 4+ Re Cklakz 27i(ky 8 +ky5,)

10 o

where the coefficients are again drawn
from a normal distribution.

* The interface eventually flips over, so that
the heavy fluid is on the bottom.

Experimental photographs by Youngs



Comparison With Experiments

130 x 130 Higher-Order Interface (t/7 = 1.7, A = 0.5,e = 0.0016)
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NFB This is an artifact of the imaging
Tethod, not the actual fluid mixing
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An experiment of Youngs, showing the tilted rig

Side view of z-model at f = 1.7¢ The tilted rig “flipping over” in our simulation.

after 3gms, or approximately 1.77.



Cloud Rise

z-model + density stratification + shear flow

Cloud rise interface evolution

* A sphere of warm air rising ° ' ' . .

into density stratification el Qj, .r:-
w/ horizontal wind shear. -

* Baroclinic generation of
vorticity dominates the Z1s) Q )

flow, so we can model this ' '
. 1F t=6 min
using the z-model @ t=4 min
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Diffuse
Interface

Sharp

Interface Rayleigh-Taylor Instability

1) water droplet impact

2) plume of superheated gas
from atomic bomb

3) z-model simulation

Rayleigh-Taylor instability in clouds vs. z-model



Shock-Contact interaction
Z-model + GSD

* Coupling contact model to
compressible flow field for RMI
(Ramani and Shkoller 20)

* Coupling contact discontinuities to
geometrical shock dynamics (GSD),
with full velocity reconstruction.

* Comparison with experiments of
Haas/Sturtevant on shock-bubble
Interaction

0.4

-0.5

Shock-Bubble Interaction (M = 1.22, Helium in Air)
|

) ) A B




Shocks

Geometrical Shock Dynamics (Whitham, Schwendeman)

* Interface model for the shock
position and shock Mach number

shock speed

sound speed

* Models shock wave propagating
into quiescent gas (e.g. blast wave
from explosion, shock wave from
supersonic airplane).

Schlieren/Interferometer image of blast wave (Kleine/Takayama)



Shocks

Nonuniform Media (a)

* When the sound speed changes,
the Mach number changes too:

Mcosf Ac
M = i

M,y ¢

* In particular, where the shock
encounters a density discontinuity,
the shock develops a corner. |

Shock propagating through sphere of lighter gas (Schwendeman)



Shocks and Contacts

Coupling the z-model and the kinematic shock model

* The contact is affected by the shock via baroclinic vorticity production:

1 1
Aw = (— — —) Ap sin 6.
prT P

* The shock is affected by the contact via the change in sound speed:

Mcosf Ac
M = — szm.

- pM,y) p

* The full velocity is reconstructed from the amplitudes of vorticity and compression,
using our boundary integral formulation.
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Mach 1.22 shock propagating through helium bubble in air;
our simulation vs. experiments of Haas/Sturtevant.
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Nonlinear Sound Waves

The wza-model

* Compressible Euler equations have -
three distinct characteristic
velocities.

* Introduce new geometric X\
coordinate system that moves with
fast acoustic characteristic

* Simultaneously solve for both
physical variables and geometric
unknowns A

waveiront




Characteristic Surfaces

Fast Acoustic Characteristic

Geometric coordinates

yl — ﬂl(xla x29 t)a y2 — 7]2(x19 x29 t)
Wavefronts given by x; = const.
Tangent and normal directions

_ (0yny,0511) ~ (0a11p, — Ooy)
T n

G S D I G D]

Time-evolution given by

o =uon+ (conn
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W Characteristic Surfaces
.~ Normal Surfaces
Time-Slices
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Geometric Riemann Variables

The wza-model

* Riemann invariants givenbyw =u-n+c/a,z=u-n—cla,a=u - .

 In1d, wis constant along fast acoustic characteristic; in 2d, the evolution of w only
depends on derivatives tangent to wavefront.

Evolution of wavefront Evolution of geometric Riemann

1+ 0( 1 — 0{ variables along wavefront
atn = ar + ( o / / Normal derivatives of subdominant

Riemann variables are negligible

6tw:—a6(1;aw+ > )——(W—Z)da+ (W —Zz)—az)lc+a8n T l

0,z = — ao, (lzaw+ [« )+—(w—z)0a— <Z(W — %)+ a’ )K+a(w—z)8nz—a0nn-f

(1+aw+ —27) +%a(w+z)l<+%(w—z)dna

ata_——(w—z)a(w—z)+ (W + 2) 5



Mach 0.1 Mach 0.3

Sound Waves | :

3.5 3.5°

Interface Model 3 |

* Following the fast characteristic, we

obtain an interface model for
acoustic waves. : . . . o

o
_
N
w
N
o
—_
N
w

Mach 0.5 Mach 0.9

* Approaches geometrical optics in ‘[ .
the low Mach number limit

* Tracks Riemann invariants along
fast acoustic characteristics

» Captures nonlinear effects | |
(steepening of acoustic waves into : . . . o

shock waves)



Wavefronts at 4.975ms (emitted 2x/period)
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Pressure vs. radius along the negative y-axis
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Future Work

* Models in development:
* Interface model for compressible vorticity waves and contact discontinuities.
* Interface model for shock waves using our framework.
» Steepening of nonlinear sound waves into shock waves.
* Incompressible contact model including viscous effects
* Coupling of interface models:
» Shock-contact interaction

 Shock-sound wave interaction
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