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Methodology
Multiscale Flow via Interface Models

• Action at many scales 

• Direct numerical simulation is 
computationally expensive  

• Idea: decompose flow into simple 
constituent parts 

• e.g. transport, diffusion, shock 
waves, contacts, acoustic waves, 
flame fronts, etc. 

• Model using interface methods



Interface Methods
Strengths and Weaknesses

• Fluid systems often dominated by 
propagating waves and surfaces of 
discontinuity. 

• Interface methods offer geometric 
flexibility, computational efficiency, 
and concise representation. 

• Less useful at scales where flow is 
dominated by mixing or turbulence.



Incompressible Flow
Contact Discontinuities

• Nonlocal effects of incompressible 
flow recovered using boundary 
integral methods. 

• We developed the z-model for 
contact discontinuities in 2d & 3d. 

• Matches analytical and 
experimental predictions for 
Rayleigh-Taylor Instability (RTI).

Rayleigh-Taylor instability (z-model with reconstructed density/velocity)



Compressible Flow
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Nonlinear Sound Waves

• Novel geometric coordinates which 
align with propagating wave or 
surface of discontinuity. 

• The wza-model for nonlinear 
sound waves in 2d. 

• Extension to shock waves/vorticity 
waves/contacts in progress

Sound wave emitted from moving object at various speeds (abc-model)
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The z-Model
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• Interface model for the interface 
position and amplitude of vorticity. 

• Models the deposition of vorticity 
on density discontinuities: 
 
            . 

• Velocity reconstructed using 
nonlocal Biot-Savart integral.

Dω
Dt

=
∇ρ × ∇p

ρ2

z-model interface, Rayleigh-Taylor instability with reconstructed velocity



Velocity Reconstruction

• An arbitrary velocity field  can be reconstructed from its vorticity  and 
compression : 
 
                                  

• Given a vortex sheet at  in incompressible flow with amplitude of vorticity 
, the velocity is given by the Biot-Savart law, 

 
                                         

u ω = curl u
χ = div u

u(x) =
1

4π ∭ℝ3

ω(x′￼) × (x − x′￼)
|x − x′￼|3 +

χ(x′￼)(x − x′￼)
|x − x′￼|3 dx′￼

Γ(t)
ω̄(x, t), x ∈ Γ(t)

u(x, t) =
1

4π ∬Γ

ω̄(x′￼, t) × (x − x′￼)
|x − x′￼|3 dS(x′￼)



Single-mode Rayleigh-Taylor instability Rising bubble interacting with unstable density interface





3D Single-Mode RTI



Comparison With Experiments

Experimental setup of Waddell/Jacobs and Wilkinson/Jacobs

Single-Mode RT Instability

• A standing wave is excited in a tank 
containing two fluids, the heavier fluid 
on the bottom. 

• The tank is then accelerated 
downward, so that the acceleration 
points from the heavier fluid into the 
lighter fluid.  

• The resulting Rayleigh-Taylor 
instability is photographed along the 
tank’s diagonal using PLIF (planar laser 
induced fluorescence).



Comparison of -Model to 
Experimental Data of Wilkinson/

Jacobs, Showing Diagonal 
Cross-Section

z



Comparison With Experiments

Rocket Rig Experiment

• Theory predicts that the RT mixing 
layer grows quadratically with time: 

 

• Experiments of Read and Youngs 
found constant of proportionality 

 

• Model of Cabot/Cook & Ristorcelli/
Clark measures  dynamically:  

h − h0 = αAgt2

α ≈ 0.06 or 0.07

α

α = ·h2/(4Agh)

h(
t)



Comparison With Experiments

Width of mixing layer, averaged over 100 runs. The mean is shown in red, and 
the grey bands show one and two standard deviations. Here  is a characteristic 
length scale and  is the characteristic time scale. The simulations 

and the experiment were both run for ms, or approximately .

λ
τ = (λ/Ag)1/2

60 2.7τ

Rocket Rig

We begin with randomized initial data 

 

where the coefficients  are sampled 
from a normal distribution. 

We averaged the result of 100 runs, 
using parameters that match Read’s 
NaI/Pentane experiment.

z3 = Re
N

∑
k1,k2=−N

ck1,k2
e2πi(k1s1+k2s2)

ck1,k2



Comparison With Experiments
Tilted Rocket Rig

• This experiment is similar to the rocket rig, 
but the tank is tilted at a slope of 1/10. 

• Our initial data has the form 

         

where the coefficients are again drawn 
from a normal distribution. 

• The interface eventually flips over, so that 
the heavy fluid is on the bottom.

z3 =
s1

10
+ Re

N

∑
k1,k2=−N

ck1,k2
e2πi(k1s1+k2s2)

Experimental photographs by Youngs



An experiment of Youngs, showing the tilted rig 
after 39ms, or approximately .1.7τ

The tilted rig “flipping over” in our simulation.  

N.B. This is an artifact of the imaging 
method, not the actual fluid mixing

Side view of -model at z t = 1.7τ

Comparison With Experiments



Cloud Rise
z-model + density stratification + shear flow

• A sphere of warm air rising 
into density stratification 
w/ horizontal wind shear. 

• Baroclinic generation of 
vorticity dominates the 
flow, so we can model this 
using the z-model





Rayleigh-Taylor instability in clouds vs. z-model

Rayleigh-Taylor Instability 
1) water droplet impact 
2) plume of superheated gas 

from atomic bomb 
3) z-model simulation

Diffuse 
Interface

Sharp 
Interface



Shock-Contact interaction
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Z-model + GSD

• Coupling contact model to 
compressible flow field for RMI 
(Ramani and Shkoller ’20) 

• Coupling contact discontinuities to 
geometrical shock dynamics (GSD), 
with full velocity reconstruction. 

• Comparison with experiments of 
Haas/Sturtevant on shock-bubble 
interaction



Shocks
Geometrical Shock Dynamics (Whitham, Schwendeman)

• Interface model for the shock 
position and shock Mach number 
 
             . 

• Models shock wave propagating 
into quiescent gas (e.g. blast wave 
from explosion, shock wave from 
supersonic airplane). 

M =
shock speed
sound speed

Schlieren/Interferometer image of blast wave (Kleine/Takayama)



Shocks
Nonuniform Media

• When the sound speed changes, 
the Mach number changes too: 
             
           . 

• In particular, where the shock 
encounters a density discontinuity, 
the shock develops a corner.

ΔM =
M cos θ
β(M, γ)

Δc
c

Shock propagating through sphere of lighter gas (Schwendeman)



Shocks and Contacts

• The contact is affected by the shock via baroclinic vorticity production: 
                                   

                                                  . 

• The shock is affected by the contact via the change in sound speed: 
 
                                       . 

• The full velocity is reconstructed from the amplitudes of vorticity and compression, 
using our boundary integral formulation.

Δω = ( 1
ρ+

−
1

ρ− ) Δp sin θ

ΔM =
M cos θ
β(M, γ)

Δc
c

c2 =
γp
ρ

Coupling the z-model and the kinematic shock model
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Mach 1.22 shock propagating through helium bubble in air; 
our simulation vs. experiments of Haas/Sturtevant.



Air-Helium Air-Freon



Nonlinear Sound Waves
The wza-model

• Compressible Euler equations have 
three distinct characteristic 
velocities. 

• Introduce new geometric 
coordinate system that moves with 
fast acoustic characteristic 

• Simultaneously solve for both 
physical variables and geometric 
unknowns



Characteristic Surfaces
Fast Acoustic Characteristic

• Geometric coordinates 

• Wavefronts given by  

• Tangent and normal directions 

• Time-evolution given by

x1 = const.

y1 = η1(x1, x2, t), y2 = η2(x1, x2, t)

τ =
(∂2η1, ∂2η2)

| (∂2η1, ∂2η2) |
, n =

(∂2η2, − ∂2η1)
| (∂2η1, ∂2η2) |

∂tη = u ∘ η + (c ∘ η)n
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• Riemann invariants given by , , . 

• In 1d,  is constant along fast acoustic characteristic; in 2d, the evolution of  only 
depends on derivatives tangent to wavefront.

w = u ⋅ n + c/α z = u ⋅ n − c/α a = u ⋅ τ

w w

∂tη = aτ + (1 + α
2 w + 1 − α

2 z)n

∂tw = − a∂τ( 1 + α
2 w + 1 − α

2 z) − α
2 (w − z)∂τa + (α

4 (w2 − z2) − a2)κ + a∂nn ⋅ τ

∂tz = − a∂τ( 1 + α
2 w + 1 − α

2 z) + α
2 (w − z)∂τa − (α

4 (w2 − z2) + a2)κ + α(w − z)∂nz − a∂nn ⋅ τ

∂ta = − α
4 (w − z)∂τ(w − z) + 1

2 (w + z)( 1 + α
2 w + 1 − α

2 z) + 1
2 a(w + z)κ + α

2 (w − z)∂na

Geometric Riemann Variables
The wza-model

Evolution of wavefront Evolution of geometric Riemann 
variables along wavefront

Normal derivatives of subdominant 
Riemann variables are negligible



Sound Waves
Interface Model

• Following the fast characteristic, we 
obtain an interface model for 
acoustic waves. 

• Approaches geometrical optics in 
the low Mach number limit 

• Tracks Riemann invariants along 
fast acoustic characteristics 

• Captures nonlinear effects 
(steepening of acoustic waves into 
shock waves)
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Continuous “emission” of 
wavefronts allows for 
reconstruction of sound 
wave profiles



Future Work

• Models in development: 

• Interface model for compressible vorticity waves and contact discontinuities. 

• Interface model for shock waves using our framework. 

• Steepening of nonlinear sound waves into shock waves. 

• Incompressible contact model including viscous effects 

• Coupling of interface models: 

• Shock-contact interaction 

• Shock-sound wave interaction



Thank You!


