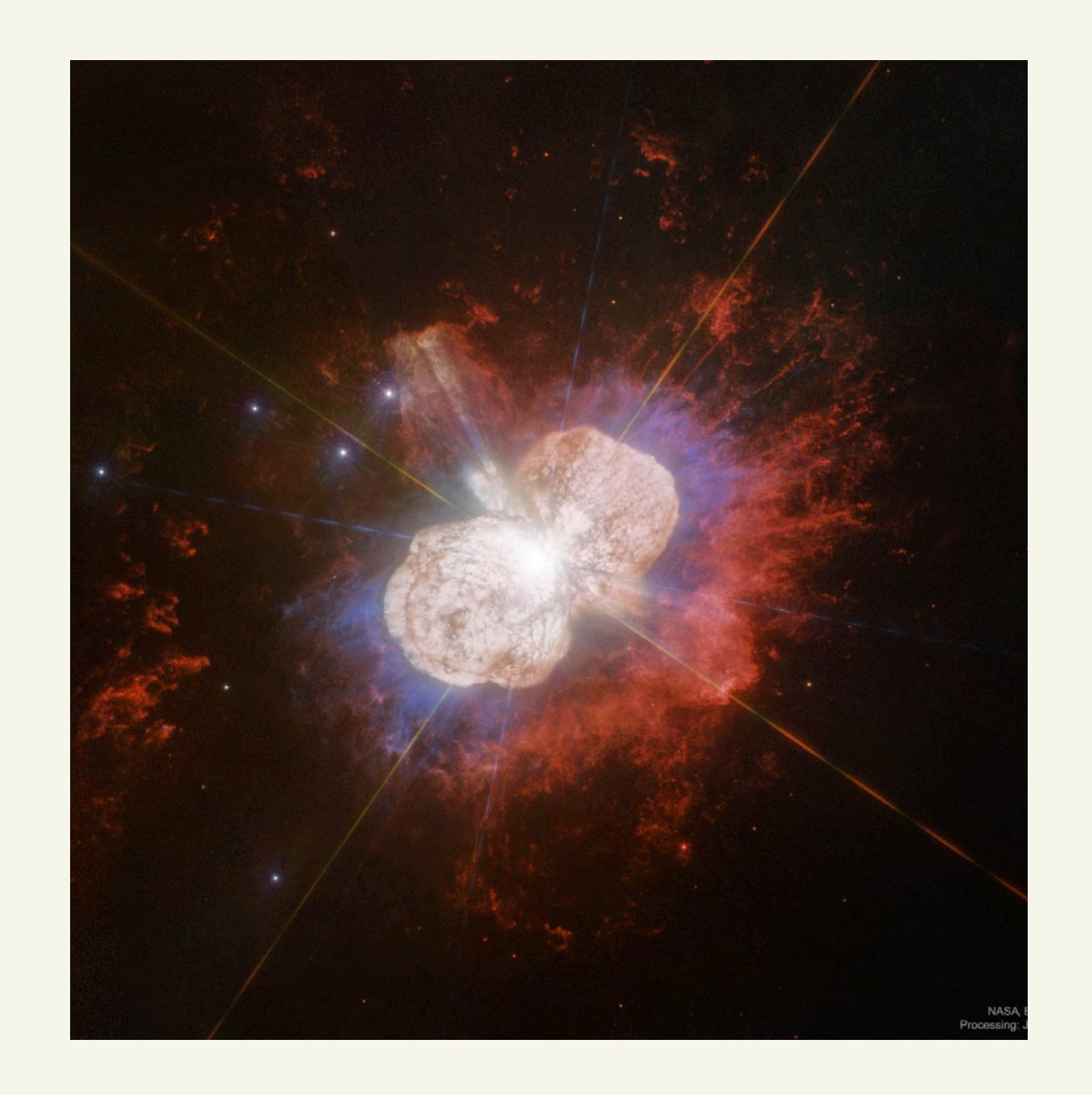
Multiscale Vortex Methods SIAM NCC'25

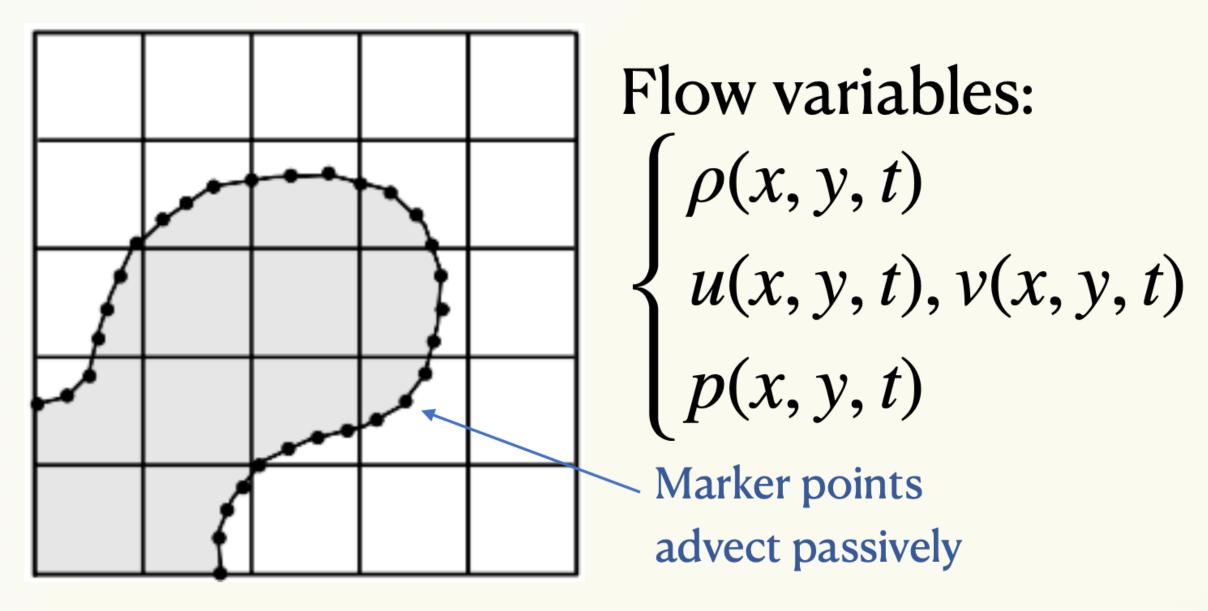
Methodology

Vortical flows via interface models

- Fluid systems often dominated by surfaces of discontinuity—shocks, contacts, vortex sheets.
- Interface methods offer geometric flexibility, computational efficiency, and concise representation.
- Less useful at scales where flow is dominated by mixing or turbulence.



Front Tracking vs. Interface Models



Schematic of front-tracking method

Interface variables: $\begin{cases} x(s,t), y(s,t) \\ \omega(s,t) \\ \vdots \\ \text{Marker points are active variables} \end{cases}$

Interface model simulation

Schematic of interface model

 Self-contained equations for interface location and quantities defined on the interface

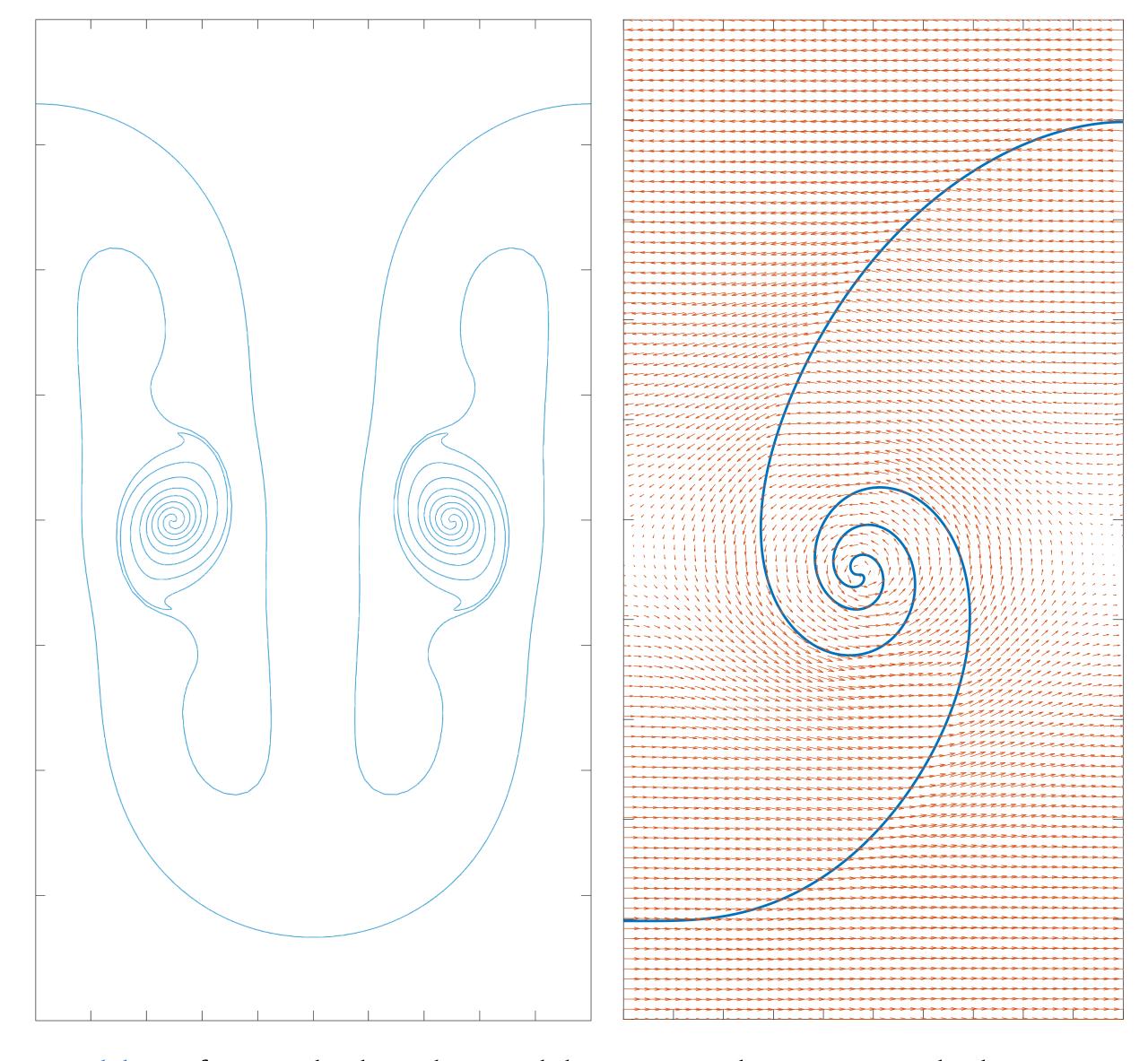
Eulerian simulation + front tracking

- Tracks density and velocity on 2D mesh + advects
 1D interface with fluid velocity
- Accuracy depends on resolution of both 2D
 Eulerian mesh and 1D interface mesh

The z-Model

(P. and Shkoller, JFM '23)

- Interface model for the interface position and amplitude of vorticity.
- Models the deposition of vorticity on density discontinuities.
- Velocity reconstructed using nonlocal Biot-Savart integral, assuming incompressible and irrotational flow in the bulk.



z-model interface, Rayleigh-Taylor instability

with reconstructed velocity

Two-phase compressible flow

- Two regions $\Omega^+(t)$, $\Omega^-(t)$ separated by a free surface $\Gamma(t)$.
- Compressible Euler:

$$\partial_{t}\rho^{\pm} + \nabla \cdot (\rho^{\pm} \boldsymbol{u}^{\pm}) = 0, \qquad \boldsymbol{x} \in \Omega^{\pm}(t)$$

$$\partial_{t}(\rho^{\pm} \boldsymbol{u}^{\pm}) + \nabla \cdot (\rho^{\pm} \boldsymbol{u}^{\pm} \otimes \boldsymbol{u}^{\pm}) + \nabla p^{\pm} = -\rho^{\pm} g \boldsymbol{e}_{y}, \qquad \boldsymbol{x} \in \Omega^{\pm}(t)$$

$$\partial_{t}(\rho^{\pm} e^{\pm}) + \nabla \cdot ((\rho^{\pm} e^{\pm} + p^{\pm}) \boldsymbol{u}^{\pm}) = -\rho^{\pm} g v^{\pm}, \qquad \boldsymbol{x} \in \Omega^{\pm}(t)$$

• Jump conditions:

$$\llbracket \boldsymbol{u} \cdot \boldsymbol{n} \rrbracket = 0, \qquad \llbracket p \rrbracket = 0,$$

Momentum equation decomposition

• Recall the definition of the distributional curl of a vector field $\mathbf{v} \in L^1_{loc}(\mathbb{R}^2)$,

$$\langle \nabla \times \mathbf{v}, f \rangle := -\int_{\mathbb{R}^2} \mathbf{v} \cdot \nabla^{\perp} f, \qquad \forall f \in C_c^{\infty}(\mathbb{R}^2)$$

• Taking the distributional curl of the two-phase momentum equation gives

$$0 = \int_{\Gamma} \llbracket \rho(\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u}) + \nabla p \rrbracket \cdot \boldsymbol{\tau} f - \int_{\mathbb{R}^2} \rho (\partial_t \boldsymbol{\omega} + \boldsymbol{u} \cdot \nabla \boldsymbol{\omega} + \boldsymbol{\omega} \operatorname{div} \boldsymbol{u} + \frac{\nabla \rho \times \nabla p}{\rho^2}) f$$

• This yields the ordinary vorticity equation in the bulk, plus a jump condition along the free surface $\Gamma(t)$.

Interface equations

- Dependent variables: interface parametrization z(s, t), and tangential velocity jump $\mu(s, t) := [u](z(s, t), t) \cdot \partial_s z(s, t)$
- We can reduce the 'singular part' of the momentum equation results to the z-model!

$$\partial_t \mu = \left(\frac{\rho^+ - \rho^-}{\rho^+ + \rho^-} \circ z\right) \partial_s \left(|u \circ z|^2 - \frac{\mu^2}{4 |\partial_s z|^2} - 2gz_2 \right)$$

• Using a different method, Ramani and Shkoller '20 obtained a similar equation but assuming *constant densities* ρ^+, ρ^- .

Velocity decomposition

• Biot-Savart velocity:

$$\bar{u}(x,t) = \frac{1}{2\pi} \int_{\mathbb{R}} \frac{\left(x - z(s,t)\right)^{\perp}}{\left|x - z(s,t)\right|^{2}} \mu(s,t) ds$$

Background compressible velocity:

$$\tilde{u}(x,t) = u(x,t) - \bar{u}(x,t)$$

• Discontinuity in tangential velocity is cancelled out— $\tilde{u}(x,t)$ is continuous.

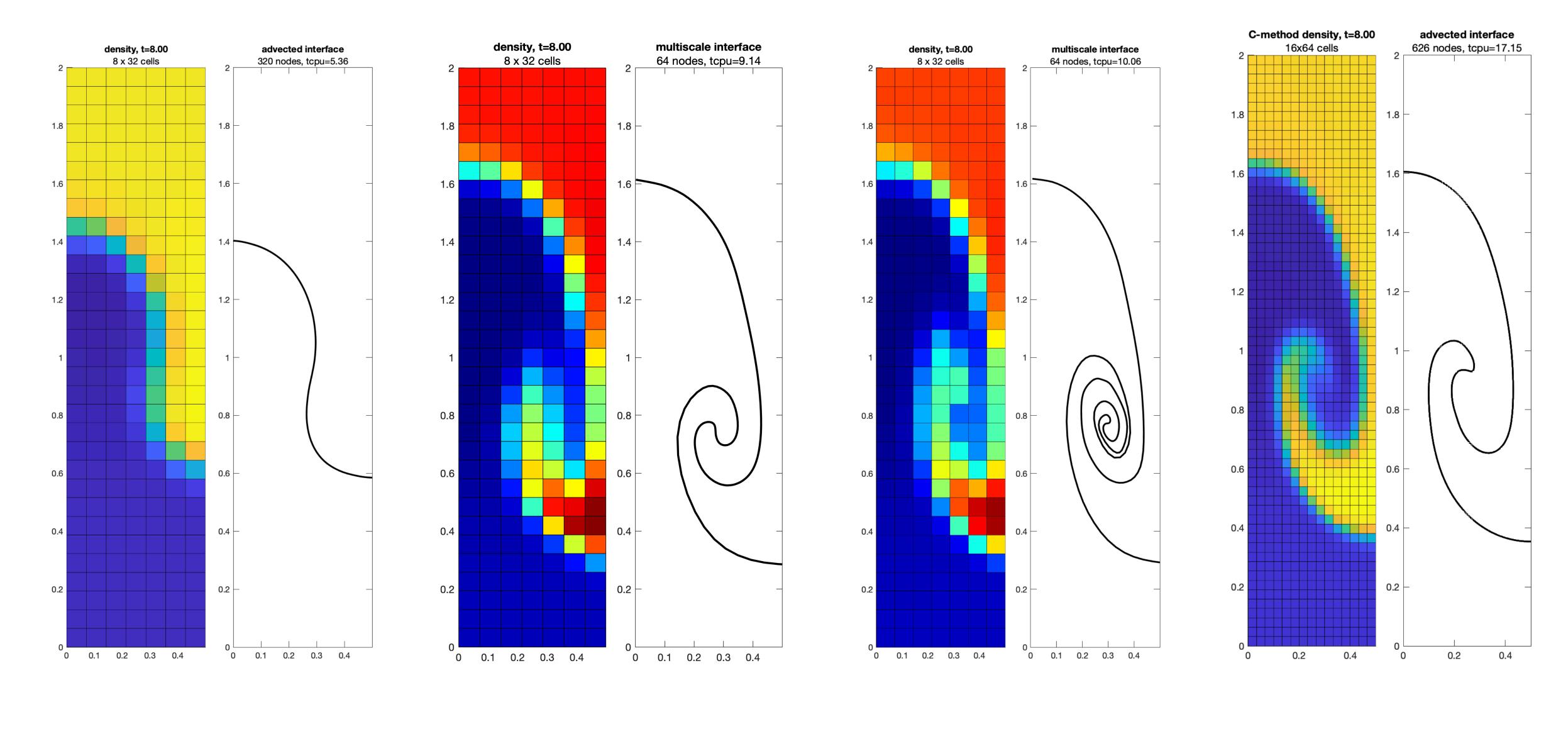
Full Multiscale System

• Bulk equations, for $(\rho, \rho \tilde{u}, \rho e)$:

$$\begin{cases} \partial_{t}\rho + \nabla \cdot (\rho \tilde{u}) = -\nabla \cdot (\rho \bar{u}) \\ \partial_{t}(\rho \tilde{u}) + \nabla \cdot (\rho \tilde{u} \otimes \tilde{u}) + \nabla p = -\partial_{t}(\rho \bar{u}) - \nabla \cdot (\rho \bar{u} \otimes \bar{u} + \rho \bar{u} \otimes \tilde{u} + \rho \tilde{u} \otimes \bar{u}) \\ \partial_{t}(\rho e) + \nabla \cdot ((\rho e + p)\tilde{u}) = -\nabla \cdot ((\rho e + p)\bar{u}) \end{cases}$$

• Interfacial equations, for (z, μ) :

$$\begin{cases} \partial_t z(s,t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{(z(s,t) - z(s',t))^{\perp}}{|z(s,t) - z(s',t)|^2} \mu(s',t) ds' + \tilde{u}(z(s,t),t), \\ \partial_t \mu = \left(\frac{\rho^+ - \rho^-}{\rho^+ + \rho^-} \circ z\right) \partial_s \left(|\partial_t z|^2 - \frac{\mu^2}{4|\partial_s z|^2} - 2gz_2\right) \end{cases}$$

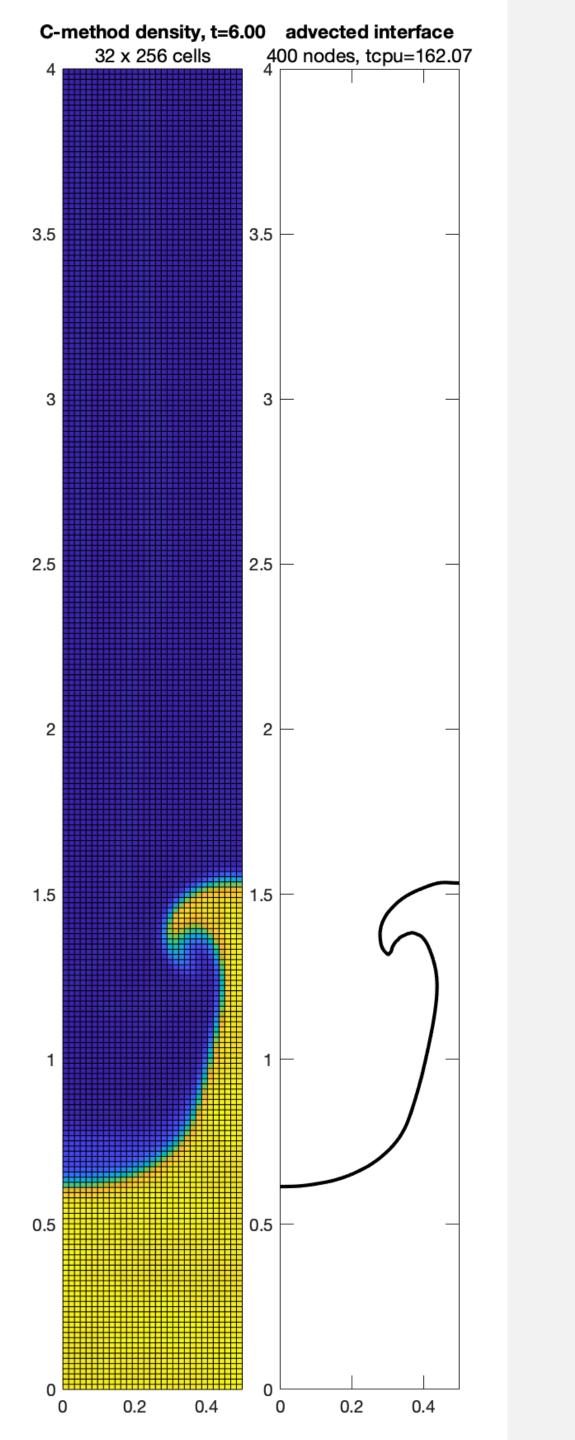


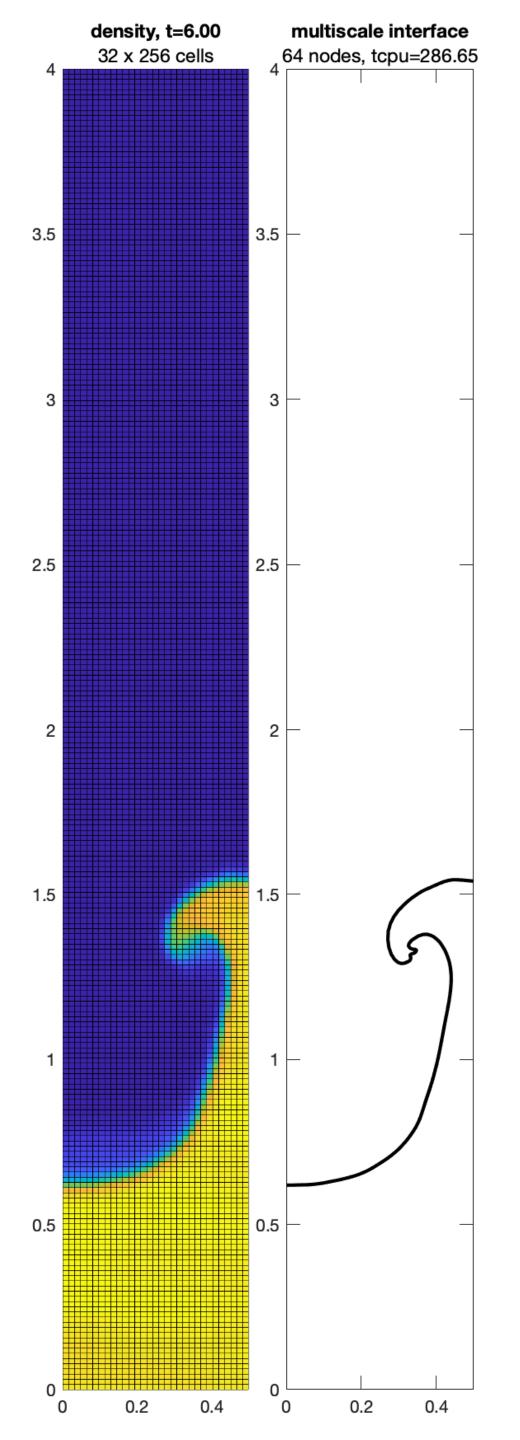
8x32 + front tracking

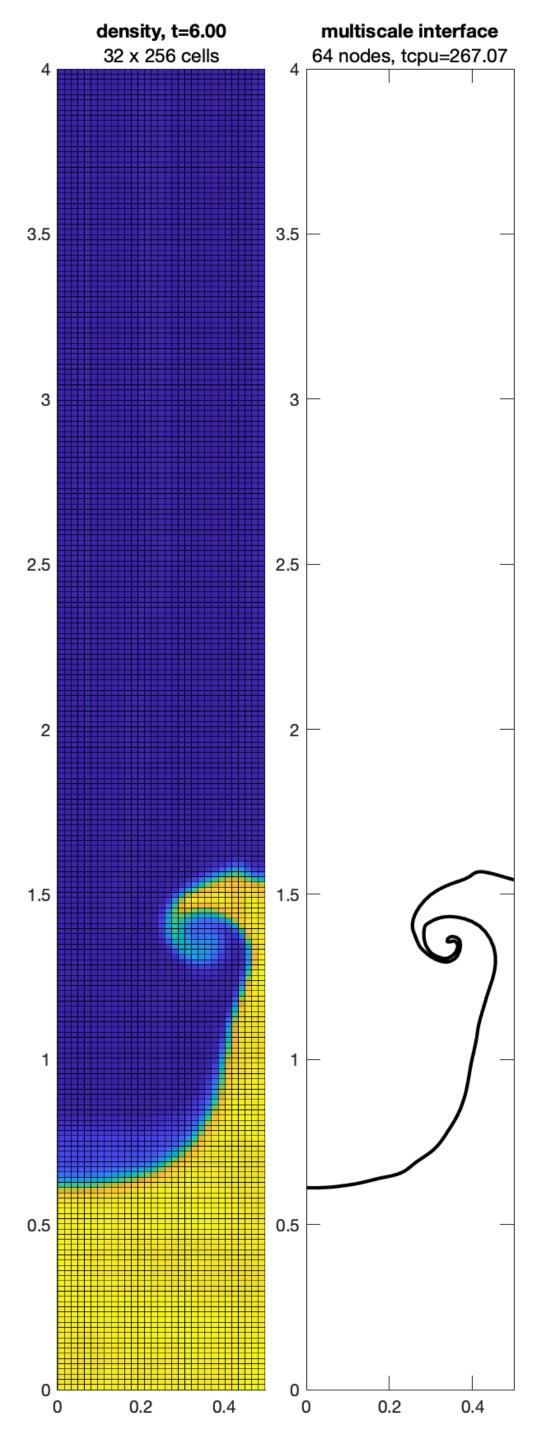
8x32 + constant-density multiscale

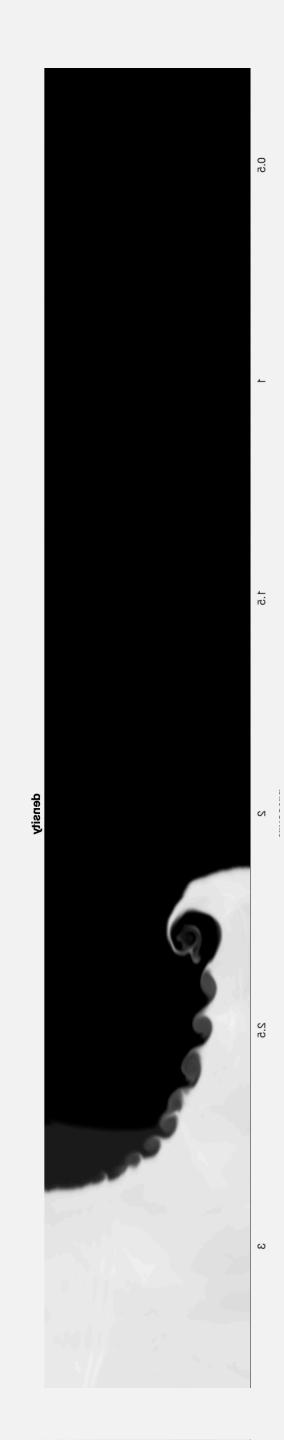
8x32 + variable-density multiscale

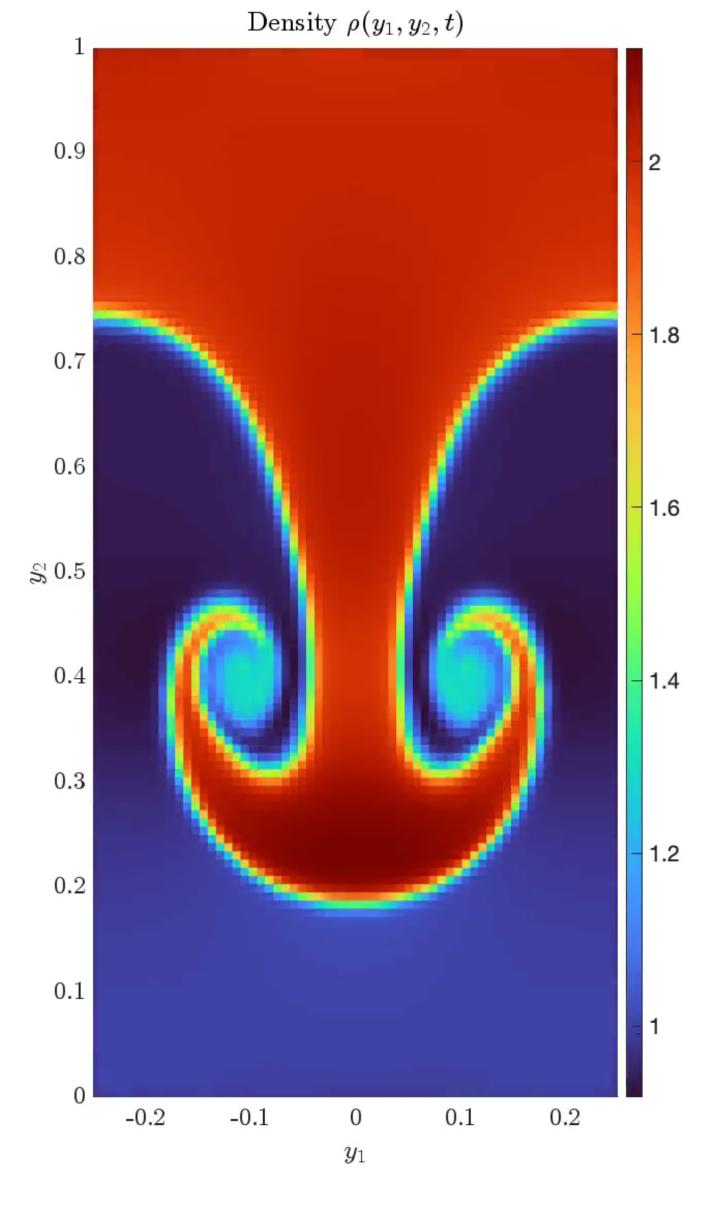
16x64 + front tracking

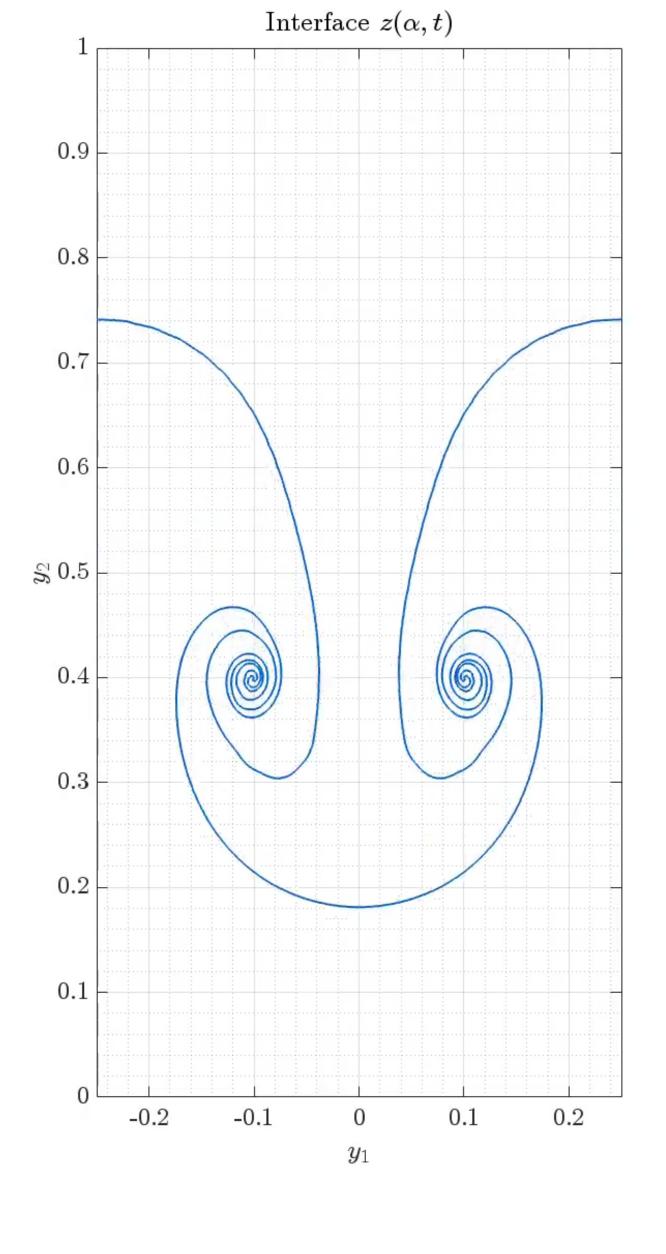












Multiscale RTI

Summary

- Developed hybrid gridded-interface model for contact discontinuities, generalizing preexisting z-model interface method.
- Found computational efficiency gains and good agreement with higher-resolution front tracking runs for Rayleigh-Taylor and Richtmyer-Meshkov problems.

