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Methodology
Vortical flows via interface models

• Fluid systems often dominated by 
surfaces of discontinuity—shocks, 
contacts, vortex sheets. 

• Interface methods offer geometric 
flexibility, computational efficiency, 
and concise representation. 

• Less useful at scales where flow is 
dominated by mixing or turbulence.





The z-Model
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(P. and Shkoller, JFM ’23)

• Interface model for the interface 
position and amplitude of vorticity. 

• Models the deposition of vorticity 
on density discontinuities. 

• Velocity reconstructed using 
nonlocal Biot-Savart integral, 
assuming incompressible and 
irrotational flow in the bulk.

z-model interface, Rayleigh-Taylor instability with reconstructed velocity



Equations of Motion

• Two regions  separated by a free surface . 

• Compressible Euler: 

• Jump conditions:

Ω+(t), Ω−(t) Γ(t)

Two-phase compressible flow



Equations of Motion

• Recall the definition of the distributional curl of a vector field , 

• Taking the distributional curl of the two-phase momentum equation gives 

• This yields the ordinary vorticity equation in the bulk, plus a jump condition along 
the free surface .

v ∈ L1
loc(ℝ

2)

Γ(t)

Momentum equation decomposition

⟨∇ × v, f⟩ := − ∫ℝ2

v ⋅ ∇⊥f, ∀f ∈ C∞
c (ℝ2)



Equations of Motion

• Dependent variables: interface parametrization , and tangential velocity jump 
 

• We can reduce the ‘singular part’ of the momentum equation results to the z-model! 

• Using a different method, Ramani and Shkoller ‘20 obtained a similar equation but 
assuming constant densities .

z(s, t)
μ(s, t) := [u](z(s, t), t) ⋅ ∂sz(s, t)

ρ+, ρ−

Interface equations

∂tμ = ( ρ+ − ρ−

ρ+ + ρ−
∘ z) ∂s( |u ∘ z |2 − μ2

4 |∂sz |2 −2gz2)



Equations of Motion

• Biot-Savart velocity: 

• Background compressible velocity: 

• Discontinuity in tangential velocity is cancelled out—  is continuous. ũ(x, t)

Velocity decomposition

ū(x, t) =
1

2π ∫ℝ

(x − z(s, t))⊥

|x − z(s, t) |2 μ(s, t)ds

ũ(x, t) = u(x, t) − ū(x, t)



Full Multiscale System
• Bulk equations, for : 

• Interfacial equations, for :

(ρ, ρũ, ρe)

(z, μ)

∂tz(s, t) = 1
2π ∫ ∞

−∞
(z(s, t) − z(s′￼, t))⊥

|z(s, t) − z(s′￼, t) |2 μ(s′￼, t)ds′￼+ ũ(z(s, t), t),

∂tμ = ( ρ+ − ρ−

ρ+ + ρ− ∘ z) ∂s( |∂tz |2 − μ2

4 |∂sz |2 − 2gz2)

∂tρ + ∇ ⋅ (ρũ) = − ∇ ⋅ (ρū)
∂t(ρũ) + ∇ ⋅ (ρũ ⊗ ũ) + ∇p = − ∂t(ρū) − ∇ ⋅ (ρū ⊗ ū + ρū ⊗ ũ + ρũ ⊗ ū)
∂t(ρe) + ∇ ⋅ ((ρe + p)ũ) = − ∇ ⋅ ((ρe + p)ū)



8x32 + front tracking 8x32 + constant-density multiscale 8x32 + variable-density multiscale 16x64 + front tracking





Multiscale RTI



Summary

• Developed hybrid gridded-interface model for contact discontinuities, generalizing 
preexisting z-model interface method. 

• Found computational efficiency gains and good agreement with higher-resolution 
front tracking runs for Rayleigh-Taylor and Richtmyer-Meshkov problems.



Thank You!


