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Methodology

Fluid Equations are HARD &

* Action at many scales

* Direct numerical simulation is
computationally unfeasible

* Idea: decompose flow into simple
constituent parts

 e.g. transport, diffusion, shock
waves, contact discontinuities,
reaction, combustion, etc.




Fluid Equations

But WHY are they hard? @

* Euler/Navier-Stokes equations
come from conservation of mass,
momentum, and energy.

 Turbulence activates small scales.
Discontinuities form in finite time
from smooth initial data.

* Avoiding smearing discontinuities
or introducing spurious oscillation
(Gibbs) is very difficult numerically.
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Smoke plume from the eruption of Mt. Saint Helens (USGS) Phytoplankton, as seen from space (NASA)



https://www.youtube.com/watch?v=Shv-lyq1xdE

Our Contribution
Shock/Contact Models

* Interface model for contact
discontinuities (Granero & Shkoller
17 in 2d, P. and Shkoller 22 in 3d)

* Coupling contact model to
compressible flow field (Ramani
and Shkoller 20, '22)

* Interface model for shock fronts
and contact discontinuities, with
full velocity reconstruction.
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Shock-Bubble Interaction (M = 1.22, Helium in Air)
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Terminology

Surface of discontinuity: curve (in 2d) or surface (in 3d) along which one or more
of the fluid variables (density, velocity, pressure) are discontinuous.

Shock: surface of discontinuity where the normal velocity is discontinuous.
Contact: surface of discontinuity where the tangential velocity is discontinuous.
Incompressible flow: flow where the divergence of the velocity vanishes.
Irrotational flow: flow where the curl of the velocity vanishes.

Interface model: model where the dependent variables are defined only on a curve
(in 2d) or a surface (in 3d).



Flow Reconstruction

* An arbitrary velocity field # can be reconstructed from its vorticity @w = curl # and
compression y = div u:

u(x) = ™ X

* This continues to work when the vorticity and compression are distributions
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* Interface model for the interface
position and amplitude of vorticity.

* Models the deposition of vorticity
on density discontinuities:

Contacts

The z-model

Dw

VpXVp

Dt

* In everyday terms, this means the
interface between oil/water, hot air/

5 :

cold air, etc.
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z-model interface

with reconstructed velocity
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Single-mode Rayleigh-Taylor instability Rising bubble interacting with unstable density interface



Diffuse
Interface

Sharp

Interface Rayleigh-Taylor Instability

1) water droplet impact

2) plume of superheated gas
from atomic bomb

3) z-model simulation

Rayleigh-Taylor instability in clouds vs. z-model



Comparison With Experiments

Single-Mode RT Instability

* A standing wave is excited in a tank
containing two fluids, the heavier fluid
on the bottom.

* The tank is then accelerated
downward, so that the acceleration
points from the heavier fluid into the
lighter fluid.

* The resulting Rayleigh-Taylor
instability is photographed along the
tank’s diagonal using PLIF (planar laser
induced fluorescence).
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Experimental setup of Waddell/Jacobs and Wilkinson/Jacobs






* A sphere of warm air
(density py) rises into air of
density p(v), dp/dy < 0.

* Wind blows horizontally
with speed U(y),
dU/dy > 0.

* Cool rollup happens!

Cloud Rise

z-model + shear flow

2.5

Cloud rise interface evolution
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Comparison With Experiments

. . GUIDE RODS—f=<—1- BACK LIGHTING
Rocket Rig Experiment — SCREEN
ROCKET MOTOR\\ gl?g'?g MOUNTING
accesnousrens—y | ) =

* Theory predicts that the RT mixing FeEREROnE ERS\\; man

layer grows quadratically with time: PTFE. BUSHES el wine prose

N\ b

* Experiments of Read and Youngs SUPPORT TUBE DISTANCE SCALE

found constant of proportionality

a ~ 0.06 or 0.07

* Model of Cabot/Cook & Ristorcelli/

FOAM CUSHION

Clark measures a dynamically:

a = h*/(4Agh) :

3
Fig. 1. Experimental apparatus.

60:8ms



Comparison With Experiments

Rocket Rig: Higher-Order z-model

Rocket ng 0.5 1 T 5 (h—hy) /A y

0.06(t/7)* o

We begin with randomized initial data

N
— 2ﬂi(k1S1+k2S2) zf“
Z3 = Re Z Ch, k€
kl,kzz_N

where the coefficients ¢; , are sampled
from a normal distribution.

We averaged the result Of 100 runs, Width of mixing layer, averaged over 100 runs. The mean is shown in red, and

. ’ the grey bands show one and two standard deviations. Here 4 is a characteristic
USlng parameters that matCh Read S length scale and 7 = (1/Ag)"? is the characteristic time scale. The simulations
Nal/ Pentane experlment. and the experiment were both run for 60ms, or approximately 2.77.



Side N()te Mixing layer at ¢/7 = 3

0.4

Ensemble Averaging

 Brownian motion <« diffusion.

» Conjecture: ensemble average of A 05 0 0.5 1
. . . . « . )
inviscid flows with random initial

1 1 Mixing layer at t/7 = 4
data gives viscous flow. 05 g layer at ¢/

* We have observed this qualitatively
from our z-model runs. Can we
make it quantitative?




Shocks

Geometrical Shock Dynamics (Whitham, Schwendeman)

* Interface model for the shock
position and shock Mach number

shock speed

sound speed

* Models shock wave propagating
into quiescent gas (e.g. blast wave
from explosion, shock wave from
supersonic airplane).

Schlieren/Interferometer image of blast wave (Kleine/Takayama)



Shocks

Nonuniform Media (a)

* When the sound speed has a jump,
the Mach number jumps too:

Mcosf Ac
M = i

M,y ¢

* In particular, where the shock
crosses a contact, we have a corner
in the shock surface. i

. !
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Shock propagating through sphere of lighter gas (Schwendeman)



Shocks and Contacts

Coupling the z-model and the kinematic shock model

* The contact is affected by the shock via baroclinic vorticity production:

1 1
Aw = (— — —) Ap sin 6.
prT P

* The shock is affected by the contact via the change in sound speed:

Mcosf Ac
M = — szm.

- pM,y) p

* The full velocity is reconstructed from the amplitudes of vorticity and compression,
using our boundary integral formulation.
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Mach 1.22 shock propagating through helium bubble in air;
our simulation vs. experiments of Haas/Sturtevant.
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Future Directions

» Species transport: 0. X + (u - V)X = 0.
» Reaction/Combustion: 0,G+ (u - V)G =U|VG]|.

* Applications to wildfire modeling, cloud formation, inertial confinement fusion,
blast wave modeling, and more!
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