4(d) \(r \land s \iff T \), so the disjunction is \(T \).

6. Not equivalent. If \(P \iff T \), \(Q \) and \(R \) are \(F \), then \((P \land Q) \lor R \iff F\), while \(P \lor (Q \land R) \iff T \).

9(a) Neither. If both \(P \) and \(Q \) are \(T \), then the value is \(T \), while if \(P \iff T \) and \(Q \iff F \), the value is \(F \).

10(b) Tautology.

1.2

3(c) \(Q \) is False.

5(d) True, as \(F \iff 2 \iff False \).

6(b) True, as both sides are True.

7(a) This is equivalent to \(P \iff Q \), so \(\neg P \iff \neg Q \).

12(f) If both \(P \) and \(Q \) are \(T \), or both are \(F \), both statements are \(T \). If \(P \iff F \) and \(Q \iff T \) (or vice versa), both statements are \(F \).

16(b) Tautology. If \(P \iff T \), \(P \land (P \lor Q) \iff T \) regardless of \(Q \), and if \(P \iff F \), \(P \land (P \lor Q) \iff F \) regardless of \(Q \).

1.3

6(c) In \(T \) (as \((x > 8) \) is always True), \(\neg u \) (as \((x \text{ odd}) \) is always False), \(u \lor v \) (as \((x > 8) \) is always True), but not \(u \lor w \) (take \(x = 3 \)).

8(c) False (the only solution \(x = -1 \) is not \(x \in \mathbb{N} \)).

10(c) False. The negation \((\exists x)(\exists y)(x^2 + y^2 \neq -1)\) is True as \(x^2 + y^2 \geq 0 \).

10(e) True. Take \(x = 0 \), \((\exists x)(\exists y)(\forall z)(xy = xz) \) is True!
4. (b) By (iv), the weapon was candleshod. By (iii), Scarlett is guilty.

5. (f) Proof There exist integers k, l, so that

\[x = 2k + 1, \quad y = 2l + 1. \]

Then

\[3x - 5y = 3(2k + 1) - 5(2l + 1) = 6k - 10l - 2 \]

\[= 2(3k - 5l - 1), \]

an even number. \(\Box\)

6.(f) Proof Case 1: \(a \geq 0\), then \(|a| \leq b \iff a \leq b\), which holds by assumption.

Case 2: \(a < 0\), then \(|a| \leq b \iff -a \leq b\), which also holds by assumption. \(\Box\)

8a. Proof Case 1: \(n\) even. Then \(n = 2k\) for some \(k \in \mathbb{Z}\), and \(n^2 + n + 3 = 4k^2 + 2k + 3 = 2(2k^2 + k + 1)\), an odd number.

Case 2: \(n\) odd. Then \(n = 2k + 1\) for some \(k \in \mathbb{Z}\), and \(n^2 + n + 3 = 4k^2 + 4k + 1 + 2k + 1 + 3\)

\[= 4k^2 + 6k + 5 = 2(2k^2 + 3k + 2) + 1, \]

an odd number. \(\Box\)

9d. Proof. Note \(2x + 5 \leq 11 \iff x \leq \frac{(11 - 5)}{2} = 3\).

Further \(x^3 + 2x^2 = x^2(x + 2) < 0 \iff x < -2\). But \(x < -2\) implies \(x < 3\). \(\Box\)

11(b). C. The proof needs the correction: \(...\), and for some integer \(r\), \(c = ar\), then \(b + c = a(q + r)\), so \(a \mid (b + c)\). \(\Box\)