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Some Applications of the Bounded Convergence Theorem for 
an Introductory Course in Analysis 

JONATHAN W. LEWIN 
Kennesaw College, Marietta, GA 30061 

The Arzela bounded convergence theorem is the special case of the Lebesgue 
dominated convergence theorem in which the functions are assumed to be Riemann 
integrable. 

THE BOUNDED CONVERGENCE THEOREM. Suppose (fn) is a sequence of functions 
which are Riemann integrable on an interval [a, b], suppose that the sequence (fn) 
converges pointwise to a function f, and suppose that there exists a number K such that 
If"(x) I < K for all n E Z + and x c [a, b]. Then the sequence of integrals fabfn(x) dx 
converges, and in the event that the function f is also Riemann integrable on [a, b], we 
have 

fnb(x) dx -X f (x) dx. 

Because the proof of this theorem has traditionally been perceived as quite hard, 
or dependent on concepts which lie beyond a first course in analysis, the theorem is 
presently omitted in such courses, and its applications at this level have therefore 
been somewhat neglected. However, a recent paper [3] of the author shows that the 
bounded convergence theorem can be proved quite easily in a first course, and it is 
therefore worth knowing what its applications might be. In this paper we shall show 
how the bounded conVergence theorem may be used to obtain simple proofs of 
some quite sharp forms of the theorems which concern differentiation under the 
integral sign and inversion of repeated integrals. We shall obtain versions of these 
theorems which are distinctly sharper than the results usually found in an under- 
graduate text. 

Differentiation under the integral sign. In a typical first course in analysis, the 
theorems on differentiation under the integral sign are given for continuous func- 
tions only (see, for example, Buck [2] Theorems 10 and 29, or Apostol [1], Theorem 
7.40). However, using the bounded convergence theorem, it is easy to drop the 
requirement of continuity, and obtain sharper theorems of the type one might 
expect to see at a more advanced level using Lebesgue integrals. A theorem of the 
sharper type may be found in [1, Theorem 10.39], three chapters beyond Theorem 
7.40, in the chapter on Lebesgue integration. 

THEOREM ON DIFFERENTIATING UNDER THE INTEGRAL SIGN. Suppose f: [a, b] X 
S -* R, where S c R, and that for every point y c S, the Riemann integral 

(Y) = J f(x, y) dx 

exists. Suppose yo is both a point of S and a limit point of S, and that for every 

This content downloaded from 69.91.134.221 on Fri, 9 Jan 2015 11:53:52 AM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


1987] THE TEACHING OF MATHEMATICS 989 

x E [a, b], the partial derivative 

D2f(x, YO) = lim [f(X Y) - 
f(x, YO)] 

Y Yo [ Y Yo J 
exists, and suppose that the Riemann integral faD2 f (x, yo) dx exists. Suppose finally 
that there exists a number K such that for all x E [a, b] and y E S\ {Yo ), we have 

[f(X, Y) - X, Yo) K. 

Then 

P (yo) = JbJf(XI yo) dx 

Proof. We deduce this theorem directly from the bounded convergence theorem. 
Given any sequence (yn) in S \ { yo ), converging to yo, we have 

________ _Py ~b[f(x,yn) -f(x, Yo) b =(Yn) 
- 

OAdx 
f (X,YJ f 

f D2f(x,yo)dx as n oo. 
Yn Y Ja Yn - YO 

A somewhat weaker but less clumsy form of this theorem is: 

Suppose f: [a, b] X S -9 R, where S is an interval, and that for every point y E S, the 
Riemann integral 

+(y) = fb(xI y) dx 

exists. Suppose that for every x E [a, b] and for every y E S, the partial derivative 
D2f(x, y) exists, and that the Riemann integral faD2f(x, y) dx exists. Suppose 
finally that there exists a number K, such that for all x E [a, b], and y E S, we have 
ID2 f(x, y)I < K. Then for everyy E S, we have 

+'(y) = D2f (x y) dx. 

The useful analogues of this theorem for improper Riemann integrals can be 
deduced almost as simply, using an obvious "dominated convergence" analogue of 
the bounded convergence theorem which would apply to improper Riemann in- 
tegrals. As an example of the sort of result that can be obtained, we cite the 
following: 

THEOREM ON DIFFERENTIATING AN IMPROPER INTEGRAL UNDER THE INTEGRAL 
SIGN. Suppose - oo < a < b < oo, S is an interval, and that f: [a, b) X S -R. 
Suppose that for every point x E [a, b), the function f (x,) is differentiable on S, and 
that for every point y E S, the functions ft( , y) and D2 f(, y) are improper Riemann 
integrable on [a, b), and suppose finally that there exists an improper Riemann 
integrable function g on [a, b) such that for all x E [a, b) and y E S, we have 
ID2Af(x, y)I A g(x) 
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Then if we define 
(Y)= bf (X, y) dx 

for all y E S, we have 

(y= bD2f(x, y) dx 

at every point y E S. 

Inversion of repeated integrals. The sharpest known result on inversion of 
iterated Riemann integrals is the elegant result that was proved in 1913 by G. 
Fichtenholz. We shall state three versions of Fichtenholz's theorem. The first of 
these is the easiest to prove, the second is the best possible result for Riemann 
integrable functions, and the third form is the ultimate theorem on the inversion of 
iterated integrals for a bounded function defined on a rectangle. In this third form 
of the theorem, we see that the theorem remains true even if some of the integrals 
are only assumed to be Lebesgue integrals. 

FICHTENHOLZ'S THEOREM ON INVERSION OF ITERATED INTEGRALS FIRST FoRM. 
Suppose f is a bounded function on the rectangle [a, b] X [c, d ]. Then the identity 

f (bx, y) dy dx = fd f (x, y) dx dy 

will hold if both sides exist as repeated Riemann integrals. 

SECOND FORM. Suppose f is a bounded function on the rectangle [a, b] x [c, d]. 
Suppose that for every point x E [a, b], the function f (x,.) is Riemann integrable on 
[c, d ], and that for every point y E [c, d ], the function f(., y) is Riemann integrable 
on [a, b]. Then 

(a) The function 4: [a, b] -) R defined by 4)(x) = fJdf(x, y) dy for all x e [a, b], 
is Riemann integrable on [a, b], 

(b) The function 4: [c, d ] -) R defined by + (y) = fabf(x, y) dx for ally e [c, d], 
is Riemann integrable on [c, d], 

(c) fab?4((x) dx = fJ4(y) dy, in other words, 

bfdf (x y) dydx = f (dx, y) dx dy. 

THIRD FoRM. Suppose f is a bounded function on the rectangle [a, b] X [c, d]. 
Suppose that for every point x E [a, b], the function f (x, ) is Riemann integrable on 
[c, d ], and that for every point y E [c, d ], the function f(, y) is Lebesgue measurable 
on [a, b]. Then 

(a) The function 4: [a, b] R defined by 4 (x) = fdf (x, y) dy for all x e [a, b], 
is Lebesgue measurable on [a, b], 

(b) The function p: [c, d ] -) R defined by + (y) = fabf (x, y) dx for all y e [c, d], 
is Riemann integrable on [c, d], 
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(c) fab+(x) dx = ftd'(y) dy, in other words, 

fbdf(xI y) dydx = Jdfbf(x, y) dxdy. 

Proof of the first form. For each natural n, denote as ??n the regular n-partition 
of [c, d]. For i = 1, . . ., n, the ith point of gn is, of course, c + i(d - c)/n, but for 
simplicity, we shall denote this as yni. For each natural n and x e [a, b], define 

n 

(An(x) f f(x, Yni)(Yni Yni-1) 
i=l1 

Since the function f(x, ) is Riemann integrable for every x E [a, b] and since 
I I n - 0, it follows from Darboux's theorem that on (x) -4 + (x) for each x E [a, b]. 
Since we have also assumed that 4 is Riemann integrable on [a, b], it follows from 
the bounded convergence theorem that 

'fOn(x) dx fb() d = fbff(x,y)dydx as n oo. 

But for each n, we have 

jb4n(x) dx = , f(x, Yni)(Yni - Yni-1) dx 

i- 1 [ f(x?Yni) dx ] (Yni -Yni-i1) 

n 

E + (Yni)(Yni Yni-1) 
i=1 

and since 4 is Riemann integrable on [c, d], the latter expression approaches 
f/4l(y) dy as n -4 so. 

This shows that fab+(x) dx = fcd"(y) dy which is what we had to prove. 

Proof of the secondform. The difference between this second form of the theorem 
and the first form, is that the Riemann integrability of the functions (A and 4 is now 
part of the conclusion. What we have to show therefore, is that 4) and 4 are 
automatically Riemann integrable on [a, b] and [c, d], respectively. As above, let 9/n 
be the regular n-partition of [c, d] for each natural n, and denote the ith point of 
gn as yni. To show that 4 is Riemann integrable on [c, d], we shall show that there 
is a number L such that for every possible choice of numbers tni in the intervals 
yni-1 yni we have 

n 

E (tni)(Yni-Yni -) > L as n -oo. 
i=1 

Let us look for the moment at one possible choice of the nunbers tni,. For each 
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natural n and x E [a, b], define 
n 

On (X) f f(x tni)(Yni Yni-1) 
i=l 

Since the function f(x, ) is Riemann integrable for every x E [a, b] and since 
IInIIj> 0, it follows from Darboux's theorem that on (x) -> 4)(x) for each x E [a, b]. 
It, therefore, follows from the bounded convergence theorem that the sequence of 
integrals fn!'4)(x) dx converges. The limit of this sequence of integrals is obviously 
independent of the choice of numbers t for if t*1 is another choice, and the 
functions n* are defined analogously by 

n 
*(X) = f(x, t,i)(yni-yny,1) for x e [a, b], 

i=1 

then we also have +*(x) -> O(x) for all x E [a, b] and the bounded convergence 
theorem implies that Jfa[On (x) - O)n*(x)] dx - 0. Now for each n, we have 

In (X) dx = E (tni)(Yni -Yni) 
a i=1 

and, therefore, the latter expression tends to a limit as required. This shows that 4 
is Riemann integrable on [c, d]. The proof that 4 is Riemann integrable on [a, b] is 
similar. 

Proof of the third form. As in the proof of the second form, we need to show that 
4 is Riemann integrable on [c, d]. The proof we use now is similar to the one used 
before except that this time, we have to make use of the Lebesgue dominated 
convergence theorem. As before, denote as ?P,7 the regular n-partition of [c, d] and 
the i th point of 9,, as y,,i. We shall prove the theorem by showing that cp is 
measurable on [a, b], and that for every possible choice of numbers tni in the 
intervals [y,,i-,, y,,j] for n - 1,... and i = 1,..., n, we have 

(tli)(Y"i-Yni-1) 4(x) dx. 
i-1 ~~~~~~~a 

Suppose then, that the numbers t,ni have been chosen. For each natural n and 
x E [a, b], define 

)1 

oil (X= x f (X, tni ) (Yni 
- Yni-1) 

i=l 

and notice that each function 4,, being a linear combination of Lebesgue measur- 
able functions, is Lebesgue measurable on [a,b]. As above, it follows from the 
Riemann integrability of the functions f(x, *) that jx(x) -* O(x) for each x E 
[a, b]. Therefore 4i is Lebesgue measurable on [a, b] and it follows from the 
Lebesgue dominated convergence theorem that 

bj (x ) dx -| 
b+ 

(x) dx 
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and the result follows as before from the identity 

jA f(x) dx tni)(Yni Yni-1) 
a i=1 

An interesting (and possibly surprising) feature of Fichtenholz's theorem is the 
fact that it makes no requirement of integrability of f jointly in the two variables x 
and y. The theorem is, therefore, quite different in character from Fubini's theorem 
and from the theorems on pages 111-114 of Buck [2] and those in Section 7.25 of 
Apostol [1]. As is well known, if the Continuum Hypothesis is assumed, then the 
analogue of Fichtenholz's theorem for Lebesgue integrals -is not even true; see 
Rudin [5, page 152]. This means that the above requirement of Riemann integrabil- 
ity of the function with respect to at least one of its variables is really needed. Some 
further counterexamples may be found in Luxemburg [4], which also contains a 
significant generalization of Fichtenholz's theorem to some abstract theories of 
integration. But it should be mentioned that one of the examples cited by Luxem- 
burg is incorrect, possibly a result of a misreading of Proposition C49 in Sierpiniski 
[6]. Luxemburg cites the incorrect example as a counter example to the above third 
form of Fichtenholz's theorem. 
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