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These matrices have the same easily computable characteristic polynomials as N-matrices and 
their entries may be selected so as to yield results analogous to the N-matrix cases. For 3 x 3 
matrices one obtains the same six cases (1)-(6) discussed above, but in each of the cases there are 
slight differences in the form of the eigenvectors. 

A TRULY ELEMENTARY APPROACH TO THE BOUNDED CONVERGENCE THEOREM 

JONATHAN W. LEWIN 
Department of Mathematics, Kennesaw College, Marietta, GA 30061 

The bounded convergence theorem follows trivially from the Lebesgue dominated convergence 
theorem, but at the level of an introductory course in analysis, when the Riemann integral is being 
studied, how hard is the bounded convergence theorem? For an answer, we might look at Bartle 
and Sherbert [2], page 203: The proof of this result is quite delicate and will be omitted. Or we might 
look at Apostol [1], page 228: The proof of Arzela's theorem is considerably more difficult than ... 
and will not be given here. Walter Rudin in [4] ignores the theorem altogether in his chapter on 
Riemann integration, presenting it only as a corollary to the Lebesgue dominated convergence 
theorem several chapters later, and in [5], in an interesting problem in Chapter Two, Rudin refers 
his readers to [3]. In [3], Eberlein does present a proof which from some points of view is 
elementary. Certainly, his proof does not require any notions of measurability, but it is hardly 
elementary from the point of view of a student who is first learning the Riemann integral. So the 
answer to the above question seems to be: very hard! But this is not so. In this paper, we present 
the proof of the bounded convergence theorem in a truly elementary setting, and in such a way 
that it could be included for the first time in an introductory course. 

We begin by defining an elementary set. A bounded subset E of R is said to be elementary if 
E is a finite union of bounded intervals, or equivalently, if XE is a step function. One can define 
the Lebesgue measure m(E) of an elementary set E to be fb'XEI where [a, b] is an interval 
including E, and one can show simply that on the family of elementary sets (which is closed under 
union, intersection and differences), Lebesgue measure is finitely additive and finitely subadditive. 
Given a Riemann integrable function f on an interval [a, b], and an elementary subset E of 
[a, b], we define fEf = JbfXE. If E and F are mutually disjoint elementary sets, then one may 
show easily that fEuFf = fEf + fFf, and if lf(x)l < K for every point x in E, then IfEf I < 
Km (E). One may also prove simply that if E is an elementary set and e > 0, then one can find a 
closed elementary subset H of E such that m(H) > m(E) - ?. 

LEMMA. Suppose (A,?) is a contracting sequence of bounded subsets of R, with an empty 
intersection. For each n, define 

an= sup{ m ( E) {E is an elementary subset of A,n }. 

Then an -O 0 as n -- oo. 

Proof. The sequence (an) is clearly decreasing. Now, to obtain a contradiction, assume that 
this sequence does not converge to 0, and choose 8 > 0, such that a,, > 8 for all n. For each n, 
choose a closed elementary subset En of An such that 

m(En) > an -82n 

and define 
n 

Hn = n E,. 
i=1 

Since (Hn) is a contracting sequence of closed bounded sets, we can obtain the desired 
contradiction by showing that each set Hn is non-empty; for then the intersection of all the sets 
H,, would be non-empty even though the larger sets A,n have an empty intersection. For this 
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purpose, we make the following two observations: Firstly, for any n, if E is an elementary subset 
of A,n \ E,n, then since 

m(E) + m(En) = m(E U Ej) an and m(E,n) > an-8/2n, 

it follows that m(E) < 8/2n. Secondly, for any n, if E is an elementary subset of A,n \ H,1, then 
since 

E = (E\ E1) U (E\ E2) U (E \ E3) U *...U(E\En) 

and since E \ E, is an elementary subset of Ai \ E, for every i = 1,2,. .. n, it follows that 
m(E) < 8. 

But for every n, because an > 8, the set An must have an elementary subset E such that 
m(E) > 8, and so it follows that each set Hn is non-empty. 

The Main Result. Suppose (f,) is a sequence of Riemann integrable functions on [a, b], suppose 
f is a Riemann integrable function on [a, b], that fn -* f pointwise on [a, b] and that for some 
constant K > 0, we have Ifnl < Kfor every n. Then we have 

f n |_ f- 

Proof. There is no loss of generality in assuming that fn > 0 for each n and that f = 0. Let 
e > 0, and for each n, define 

A,, =(x [a, b]It(x) > 2(b ) for at least one natural i > n) 

We now apply the lemma to (An) to choose a natural N such that whenever n > N, and E is an 
elementary subset of An, we have m(E) < e/2K, and the proof will be complete when we have 
shown that whenever n > N, we have fabfn < E. Let n > N. Since the integral of a Riemann 
integrable function is the same as its lower integral, in order to show that fabfn < e, it is sufficient 
to show that whenever s is a step function and 0 < s < fn, we have fbs < E. Let s be such a step 
function and define 

E = x E [a, b] is(x) > b and F=[a,b]\E. 
2(b b-a)) 

Then E and F are elementary sets, and since E C An_ we have m(E) < e/2K. Therefore 

fb IE f IF IE IFf2(6b a) If lf2(b a) 

-Km(E)+ (b-a)<e. 2(b -a) 

And that is all there is to it. Notice that while the above proof employs some of the notation and 
conveys some of the atmosphere of more advanced treatments of integration, it keeps well away 
from anything hardt Lebesgue measure is needed only for elementary sets; and all the measure is 
in this case is the sum of the lengths of the finitely many component intervals that make up an 
elementary set. The proof is accessible to students who have never seen countability and never 
seen infinite series. They don't even need the Heine Borel theorem if they know that a bounded 
sequence of real numbers must have a partial limit (cluster point) and that, consequently, a 
contracting sequence of non empty closed bounded sets must have a non empty intersection. 

Incidentally, it is easy to adapt the above proof to show that even if it is not assumed that the 
limit function f is Riemann integrable, because (fn (x)) is a Cauchy sequence for each x, the 
sequence of integrals faf? must be a Cauchy sequence and must therefore converge. This may be 
used to give a revealing explanation of the inadequacy of the Riemann integral. 
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EXPLAINING SIMPLE COMBINATORIAL ANSWERS 

ROGER B. EGGLETON 
Department of Mathematics, Statistics and Computer Science, 

University of Newcastle, N.S. W. 2308, Australia 

This note illustrates the principle: If the answer to a problem turns out to be simple, there is 
probably a good explanation for it! A simple answer should motivate us to try to derive that answer 
in a way which makes it obvious, or at least clarifies the underlying reason for its simplicity. 
Simplicity and clarity are of course subjective measures, but ones which are still useful. The 
practice of mathematics is an art as well as a science. 

Consider combinatorics. Here it is recognized that simple answers are often satisfyingly 
explicable in terms of correspondences. This theme was taken up in [3], for example, from the 
viewpoint that counting the elements of a relatively unfamiliar set X can be satisfyingly achieved 
if we establish a correspondence between the elements of X and those of some relatively familiar 
set A. The correspondence constitutes the desired explanation. In this note we take up the theme 
from the viewpoint that explanations in terms of correspondences can also be achieved between 
two sets X and A of equally familiar structure. We illustrate this with several examples, most of 
which "explain" a well-known identity, and are therefore suitable for classroom use. 

We shall use lower case symbols to denote natural numbers, including zero, and I(n) will 
denote the set comprising the first n natural numbers (that is, the natural numbers less than n). 
The family of k-subsets of I(n) will be denoted by I(n, k). We regard the binomial coefficients as 
the cardinalities of such sets, by definition: 

nk JlI(n, k) 1. 

EXAMPLE 1 (Symmetry of Pascal's Triangle). Let A = I(n, k) and X:= I(n, n - k). Pairing 
each k-subset of I(n) with its complement gives a one-to-one correspondence X * A. Hence 
IXI = IAI, so 

(n-k) k () k 

EXAMPLE 2 (Pascal's Identity, sometimes called Vandermonde's Identity). Let A = I(n + 1, 
k + 1) and X:= XO U X1, where XO = I(n, k) and X1 = I(n, k + 1). Any (k + l)-subset of 
I(n + 1) either contains the element n or it does not. In the former case, pair it with the k-subset 
of I(n) obtained by deleting the n, while in the latter case simply pair it with itself, now regarded 
as a (k + 1)-subset of I(n). This gives a one-to-one correspondence X * A, since XO and X1 are 
disjoint. Hence IXI = IXO + IXii = JAl, so 

k Jk + 1 k + 1J 

EXAMPLE 3 (Arithmetic Series Identity). The sum of natural numbers up to n, inclusive, is 
in (n + 1), which is a barely-disguised binomial coefficient. How can we explain the binomial 
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