
Discussion problems 1

Note. These are 25/125A review problems, mostly collected from past exams.

1. Suppose that \(f : [0, 1] \to \mathbb{R} \) is continuous, and \(f(x) > 0 \) for all \(x \in [0, 1] \). (a) Show that the function \(g : [0, 1] \to \mathbb{R} \) given by \(g(x) = 1/f(x) \) is bounded. (b) Does the result from (a) remain true if the closed interval \([0, 1]\) is replaced by the open interval \((0, 1)\)?

2. Suppose that \(f, g : \mathbb{R} \to \mathbb{R} \) are uniformly continuous functions. (a) Must their product \(fg \) be uniformly continuous? (b) Answer the question in (a) if both \(f \) and \(g \) are uniformly continuous and bounded.

3. Call \(f : (0, \infty) \to (0, \infty) \) slow if \(f \) is nondecreasing and \(\lim_{x \to \infty} f(2x)/f(x) = 1 \). (a) Give an example of a slow function. (b) Is \(f \) given by \(f(x) = e^{\sqrt{\log x}} \) slow? (c) Show that if \(f \) is slow, then \(\lim_{x \to \infty} f(ax)/f(x) = 1 \) for every \(a > 0 \). (d) Show that if \(f \) is slow, then \(\lim_{x \to \infty} f(x)/x^a = 0 \) for every \(a > 0 \). (e) Show that the reverse implication from (d) does not hold.

4. Assume \(k \geq 0 \) and that \(f : \mathbb{R} \to \mathbb{R} \) is such its \(k \)th derivative \(f^{(k)} \) exists and is continuous everywhere. Assume that there exists \(k + 1 \) different numbers \(x_1, \ldots, x_{k+1} \) so that \(f(x_1) = \cdots = f(x_{k+1}) = 0 \). Show that \(f^{(k)}(z) = 0 \) for some \(z \in \mathbb{R} \). Give a careful inductive proof.

5. Show that the functions (a) \(f(x) = \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^2} \) and (b) \(f(x) = \sum_{n=1}^{\infty} \frac{\log(1+nx^2)}{n^2} \) are defined and continuous everywhere. Does the series in (b) converge uniformly on \(\mathbb{R} \)?

6. Let \(f(x) = 1 + \sum_{n=1}^{\infty} a_n x^{3n} \), where

\[
a_n = \frac{1 \cdot 4 \cdot 7 \cdots (3n - 2)}{(3n)!}.
\]

(a) Prove that the series converges for every \(x \in \mathbb{R} \). (b) Show that \(f''(x) = xf(x) \) for every \(x \in \mathbb{R} \).

7. Let \(S \) be the set of all binary sequences \(\{a = (a_1a_2, \ldots) : a_i \in \{0, 1\} \text{ for all } i\} \). For \(a = (a_1a_2, \ldots) \in S \) and \(b = (\beta_1\beta_2, \ldots) \in S \), \(a \neq b \), let \(N(a, b) \) be the smallest \(i \in \mathbb{N} \) so that \(a_i \neq \beta_i \). Define \(d : S \times S \to \mathbb{R} \) by setting

\[
d(a, b) = \begin{cases}
2^{-N(a, b)} & \text{if } a \neq b \\
0 & \text{otherwise}
\end{cases}
\]

(a) Prove that \(d \) is a metric on \(S \). (b) Let \(z = (000\ldots) \) be the zero sequence. Give an example of a sequence \(a_n \in S \), \(a_n \neq z \) for all \(n \), so that \(\lim a_n = z \).
Brief solutions

1. (a) Let \(m = \inf \{ f(x) : x \in [0, 1] \} \). As \(f \) is continuous on a compact interval, it attains its minimum at an \(x_0 \in [0, 1] \). Thus \(m = f(x_0) > 0 \). It follows that \(m \leq f(x) \) and \(0 < 1/f(x) \leq 1/m \) for every \(x \in [0, 1] \).

(b) No. Take \(f(x) = x \) as a counterexample.

2. (a) No. Take \(f(x) = g(x) = x \). The product is \(h(x) = x^2 \) which is not uniformly continuous: for \(\delta > 0 \), \(h(n+\delta) - h(n) \geq 2n\delta \geq 2 \) if \(n \geq 1/\delta \).

(b) Yes. By the assumption, there exists an \(M \in \mathbb{R} \) so that \(f(x) \leq M \) and \(g(x) \leq M \) for all \(x \in \mathbb{R} \). Pick an \(\epsilon > 0 \). Then pick a \(\delta > 0 \) so that \(|x_1 - x_2| < \delta \) implies \(|f(x_2) - f(x_1)| < \epsilon/(2M) \) and \(|g(x_2) - g(x_1)| < \epsilon/(2M) \), which can be done as \(f \) and \(g \) are uniformly continuous. Then, if \(|x_1 - x_2| < \delta \),

\[
|f(x_2)g(x_2) - f(x_1)g(x_1)| = |f(x_2)g(x_2) - f(x_1)g(x_2) + f(x_1)g(x_2) - f(x_1)g(x_1)| \\
\leq |f(x_2) - f(x_1)||g(x_2)| + |f(x_1)||g(x_2) - g(x_1)| \\
\leq M|f(x_2) - f(x_1)| + M|g(x_2) - g(x_1)| < \epsilon.
\]

3. (a) The simplest example is \(f(x) = \log(x+1) \).

(b) Yes, as

\[
\sqrt{\log(2x)} = \sqrt{\log x} + \frac{\log 2}{\sqrt{\log(2x)} + \sqrt{\log x}}
\]

and the last summand goes to 0.

(c) We may assume that \(a \geq 1 \): if \(a < 1 \) we flip the fraction and make the substitution \(ax = t \). Let us first assume \(a = 2^k \) for some \(k > 1 \). Then

\[
\frac{f(ax)}{f(x)} = \frac{f(2x)}{f(x)} \frac{f(2^2x)}{f(2x)} \cdots \frac{f(2^kx)}{f(2^{k-1}x)} \to 1
\]

as every one of the \(k \) factors converges to 1. Now for any \(a > 1 \) there exists a \(k \) so that \(a \leq 2^k \), and then by monotonicity

\[
1 \leq \frac{f(ax)}{f(x)} \leq \frac{f(2^kx)}{f(x)}
\]

and the result follows by the sandwich theorem.

(d) Fix an \(a > 0 \) and pick an \(\epsilon > 0 \) so that \(1 + \epsilon < 2^{a/2} \). As \(f \) is slow, then there is an \(x_0 \) so that, for \(x \geq x_0 \), \(f(2x) \leq f(x)(1 + \epsilon) \). Therefore, for each integer \(k \geq 0 \)

\[
f(2^kx_0) \leq (1 + \epsilon)f(2^{k-1}x_0) \leq (1 + \epsilon)^2f(2^{k-2}x_0) \leq \cdots \leq (1 + \epsilon)^k f(x_0) \leq 2^{ak/2} f(x_0).
\]

Take an \(x \geq x_0 \). Then there exists a an integer \(k \geq 1 \) so that \(2^{k-1}x_0 \leq x < 2^kx_0 \) and then by monotonicity

\[
f(x) \leq f(2^kx_0) \leq (2^k)_{a/2} f(x_0) \leq (2^{k-1}x_0)^{a/2} f(x_0) = 2^{a/2}x_0^{-a/2} f(x_0) \cdot x^{a/2}.
\]

Clearly, divided by \(x^{a/2} \), the last expression goes to 0 as \(x \to \infty \).

(e) Let \(x_n = e^{n^2} \) for \(n \geq 0 \). Then let \(f(x) = e^x \) for \(x \in (x_n, x_{n+1}] \). Also let \(f(x) = 1 \) for \(x \leq 1 \) to make \(f \) defined on \((0, \infty) \). Then \(f \) is not slow, as \(f(2x_n) \geq ef(x_n) \) for all \(n \geq 0 \). Pick any \(x > 1 \). If \(x \in (x_n, x_{n+1}] \), then \(x \geq e^{n^2} \) and so \(n \leq \sqrt{\log x} \) and so \(f(x) = e^{n^2} \leq e^{\sqrt{\log x}} \). Although \(f \) is not slow, it
is bounded above by a function which is slow (by (b)), and thus \(\lim_{x \to \infty} \frac{f(x)}{x^a} = 0 \) for every \(a > 0 \) (by (d)). (It is of course also possible to show directly that \(e^{\sqrt{\log x}/x^a} \) goes to 0.)

4. The result is trivially true for \(k = 0 \). For \(k - 1 \to k \) step, assume \(k \geq 1 \) and that there exist \(x_1 < \ldots < x_{k+1} \) so that \(f(x_1) = \ldots = f(x_{k+1}) = 0 \). By the Mean Value Theorem, there exist \(c_i \in (x_i, x_{i+1}) \), so that \(f'(c_i) = 0 \), \(i = 1, \ldots, k \). By the induction hypothesis applied to the function \(g = f' \), there exists \(z \in \mathbb{R} \) such that \(g^{(k-1)}(z) = 0 \), but \(g^{(k-1)} = f^{(k)} \).

5. (a) This series converges uniformly on \(\mathbb{R} \) as

\[
\left| \frac{\sin(nx)}{n^2} \right| \leq \frac{1}{n^2}.
\]

(b) This series converges uniformly on every bounded interval. For example, for \(x \in [-M, M] \),

\[
\left| \frac{\log(1 + nx^2)}{n^2} \right| \leq \frac{\log(1 + nM^2)}{n^2},
\]

and the series with these terms converges, say by comparison to \(n^{-3/2} \).

(c) It is not true that the series converges uniformly on \(\mathbb{R} \). To show this, let \(f_N(x) \) be the sum of first \(N \) terms. We need to show that \(r_N = \sup_{x \in \mathbb{R}} |f(x) - f_N(x)| \) does not converge to 0 as \(N \to \infty \). Now, for every \(n \) one can choose \(x_n \) so that \(\log(1 + nx^2_n) \geq n^3 \). Then

\[
r_N \geq f(x_{N+1}) - f_N(x_{N+1}) = \sum_{n=N+1}^{\infty} \frac{\log(1 + nx^2_{N+1})}{n^2} \geq \frac{\log(1 + (N+1)x^2_{N+1})}{(N+1)^2} \geq N + 1 \to \infty.
\]

6. (a) This is an easy application of ratio test.

(b) This follows from the fact that derivative of a power series within its radius of convergence can be obtained through term-by-term differentiation, and some algebra.

7. (a) That \(d \) is positive and symmetric is clear, and so is the fact that \(d(a, b) = 0 \) if and only if \(a = b \). To prove the triangle inequality, assume \(a, b, c \in S \). We need to prove \(d(a, c) \leq d(a, b) + d(b, c) \). We may assume \(a \neq b \) and \(b \neq c \) or else this is trivial. So assume \(N(a, b) = i \) and \(N(b, c) = j \), and (without loss of generality) that \(i \leq j \). Then \(N(a, c) \geq i \) and so \(d(a, c) \leq 2^{-i} < 2^{-i} + 2^{-j} = d(a, b) + d(b, c) \).

(b) Assume \(a_n = (0.0111\ldots) \), with \(n - 1 \) leading 0s. Then \(d(a_n, z) = 2^{-n} \).