
Math 125B, Winter 2015.

Discussion problems 1

Note. These are 25/125A review problems, mostly collected from past exams.

1. Suppose that f : [0, 1] → R is continuous, and f(x) > 0 for all x ∈ [0, 1]. (a) Show that the function
g : [0, 1] → R given by g(x) = 1/f(x) is bounded. (b) Does the result from (a) remain true if the
closed interval [0, 1] is replaced by the open interval (0, 1)?

2. Suppose that f, g : R → R are uniformly continuous functions. (a) Must their product fg be
uniformly continuous? (b) Answer the question in (a) if both f and g are uniformly continuous and
bounded.

3. Call f : (0,∞) → (0,∞) slow if f is nondecreasing and limx→∞
f(2x)
f(x) = 1. (a) Give an example of a

slow function. (b) Is f given by f(x) = e
√
log x slow? (c) Show that if f is slow, then limx→∞

f(ax)
f(x) = 1

for every a > 0. (d) Show that if f is slow, then limx→∞
f(x)
xa = 0 for every a > 0. (e) Show that the

reverse implication from (d) does not hold.

4. Assume k ≥ 0 and that f : R → R is such its kth derivative f (k) exists and is continuous everywhere.
Assume that there exists k + 1 different numbers x1, . . . , xk+1 so that f(x1) = · · · = f(xk+1) = 0.
Show that f (k)(z) = 0 for some z ∈ R. Give a careful inductive proof.

5. Show that the functions (a) f(x) =
∑∞

n=1
sin(nx)

n2 and (b) f(x) =
∑∞

n=1
log(1+nx2)

n2 are defined and
continuous everywhere. Does the series in (b) converge uniformly on R?

6. Let f(x) = 1 +
∑∞

n=1 anx
3n, where

an =
1 · 4 · 7 · 10 · · · (3n− 2)

(3n)!
.

(a) Prove that the series converges for every x ∈ R. (b) Show that f ′′(x) = xf(x) for every x ∈ R.

7. Let S be the set of all binary sequences {a = (α1α2, . . .) : αi ∈ {0, 1} for all i}. For a = (α1α2, . . .) ∈
S and b = (β1β2, . . .) ∈ S, a ̸= b, let N(a, b) be the smallest i ∈ N so that αi ̸= βi. Define d : S×S → R
by setting

d(a, b) =

{
2−N(a,b) if a ̸= b

0 otherwise

(a) Prove that d is a metric on S. (b) Let z = (000 . . .) be the zero sequence. Give an example of a
sequence an ∈ S, an ̸= z for all n, so that lim an = z.
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Brief solutions

1. (a) Let m = inf{f(x) : x ∈ [0, 1]}. As f is continuous on a compact interval, it attains its minimum
at an x0 ∈ [0, 1]. Thus m = f(x0) > 0. It follows that m ≤ f(x) and 0 < 1/f(x) ≤ 1/m for every
x ∈ [0, 1].
(b) No. Take f(x) = x as a counterexample.

2. (a) No. Take f(x) = g(x) = x. The product is h(x) = x2 which is not uniformly continuous: for
δ > 0, h(n+ δ)− h(n) ≥ 2nδ ≥ 2 if n ≥ 1/δ.
(b) Yes. By the assumption, there exists an M ∈ R so that f(x) ≤ M and g(x) ≤ M for all
x ∈ R. Pick an ϵ > 0. Then pick a δ > 0 so that |x1 − x2| < δ implies |f(x2) − f(x1)| < ϵ/(2M)
and |g(x2) − g(x1)| < ϵ/(2M), which can be done as f and g are uniformly continuous. Then, if
|x1 − x2| < δ,

|f(x2)g(x2)− f(x1)g(x1)| = |f(x2)g(x2)− f(x1)g(x2) + f(x1)g(x2)− f(x1)g(x1)|
≤ |f(x2)− f(x1)||g(x2)|+ |f(x1)||g(x2)− g(x1)|
≤ M |f(x2)− f(x1)|+M |g(x2)− g(x1)| < ϵ.

3. (a) The simplest example is f(x) = log(x+ 1).
(b) Yes, as √

log(2x) =
√

log x+
log 2√

log(2x) +
√
log x

and the last summand goes to 0.
(c) We may assume that a ≥ 1: if a < 1 we flip the fraction and make the substitution ax = t. Let us
first assume a = 2k for some k > 1. Then

f(ax)

f(x)
=

f(2x)

f(x)

f(22x)

f(2x)
· · · f(2kx)

f(2k−1x)
→ 1

as every one of the k factors converges to 1. Now for any a > 1 there exists a k so that a ≤ 2k, and
then by monotonicity

1 ≤ f(ax)

f(x)
≤ f(2kx)

f(x)

and the result follows by the sandwich theorem.
(d) Fix an a > 0 and pick an ϵ > 0 so that 1 + ϵ < 2a/2. As f is slow, then there is an x0 so that, for
x ≥ x0, f(2x) ≤ f(x)(1 + ϵ). Therefore, for each integer k ≥ 0

f(2kx0) ≤ (1 + ϵ)f(2k−1x0) ≤ (1 + ϵ)2f(2k−2x0) ≤ · · · ≤ (1 + ϵ)kf(x0) ≤ 2ak/2f(x0).

Take an x ≥ x0. Then there exists a an integer k ≥ 1 so that 2k−1x0 ≤ x < 2kx0 and then by
monotonicity

f(x) ≤ f(2kx0) ≤ (2k)a/2f(x0) ≤ (2x−1
0 x)a/2f(x0) = 2a/2x

−a/2
0 f(x0) · xa/2.

Clearly, divided by xa, the last expression goes to 0 as x → ∞.
(e) Let xn = en

2
for n ≥ 0. Then let f(x) = en for x ∈ (xn, xn+1]. Also let f(x) = 1 for x ≤ 1 to

make f defined on (0,∞). Then f is not slow, as f(2xn) ≥ ef(xn) for all n ≥ 0. Pick any x > 1. If
x ∈ (xn, xn+1], then x ≥ en

2
and so n ≤

√
log x and so f(x) = en ≤ e

√
log x. Although f is not slow, it
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is bounded above by a function which is slow (by (b)), and thus limx→∞
f(x)
xa = 0 for every a > 0 (by

(d)). (It is of course also possible to show directly that e
√
log x/xa goes to 0.)

4. The result is trivially true for k = 0. For k − 1 → k step, assume k ≥ 1 and that there exist
x1 < . . . < xk+1 so that f(x1) = · · · = f(xk+1) = 0. By the Mean Value Theorem, there exist
ci ∈ (xi, xi+1), so that f ′(ci) = 0, i = 1, . . . , k. By the induction hypothesis applied to the function
g = f ′, there exists z ∈ R such that g(k−1)(z) = 0, but g(k−1) = f (k).

5. (a) This series converges uniformly on R as∣∣∣∣sin(nx)n2

∣∣∣∣ ≤ 1

n2
.

(b) This series converges uniformly on every bounded interval. For example, for x ∈ [−M,M ],∣∣∣∣ log(1 + nx2)

n2

∣∣∣∣ ≤ log(1 + nM2)

n2
,

and the series with these terms converges, say by comparison to n−3/2.
(c) It is not true that the series converges uniformly on R. To show this, let fN (x) be the sum of first
N terms. We need to show that rN = supx∈R |f(x)− fN (x)| does not converge to 0 as N → ∞. Now,
for every n one can choose xn so that log(1 + nx2n) ≥ n3. Then

rN ≥ f(xN+1)− fN (xN+1) =
∞∑

n=N+1

log(1 + nx2N+1)

n2
≥

log(1 + (N + 1)x2N+1)

(N + 1)2
≥ N + 1 → ∞.

6. (a) This is an easy application of ratio test.
(b) This follows from the fact that derivative of a power series within its radius of convergence can be
obtained through term-by-term differentiation, and some algebra.

7. (a) That d is positive and symmetric is clear, and so is the fact that d(a, b) = 0 if and only if a = b.
To prove the triangle inequality, assume a, b, c ∈ S. We need to prove d(a, c) ≤ d(a, b) + d(b, c). We
may assume a ̸= b and b ̸= c or else this is trivial. So assume N(a, b) = i and N(b, c) = j, and (without
loss of generality) that i ≤ j. Then N(a, c) ≥ i and so d(a, c) ≤ 2−i < 2−i + 2−j = d(a, b) + d(b, c).
(b) Assume an = (0 . . . 0111 . . .), with n− 1 leading 0s. Then d(an, z) = 2−n.
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