Math 125B, Winter 2015.

Discussion problems 10

Note. These are problems on multidimensional integration.

1. Let $R = [0,1] \times [0,1]$ and assume $f : R \to \mathbb{R}$ be a bounded function. For each statement below determine, with proof, whether it is true or false for every such f.

(a) If $g(x) = \int_0^1 f(x, y) \, dy$ exists for every x, $h(y) = \int_0^1 f(x, y) \, dx$ exists for every y, and $\int_0^1 g(x) \, dx$ and $\int_0^1 h(y) \, dy$ both exist, then $\int_R f$ exists.

(b) If $\int_B f$ exists, then $g(x) = \int_0^1 f(x, y) \, dy$ exists for every x.

- (c) If f is continuous, $A \subseteq R$, and $\int_{\bar{A}} f$ exists, then so does $\int_A f$.
- (d) If $\int_R f$ exists, and $D = \{(x, y) \in R : x = y\}$ then $\int_D f = 0$.

2. Evaluate the iterated integral

$$\int_0^1 dx \int_{\sqrt{x}}^1 \sin\left(\frac{y^3+1}{2}\right) \, dy.$$

3. Let $R = [0,1] \times [0,1]$ and $f : R \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{(x^2 + y^2)^2} & x \neq 0 \text{ and } y \neq 0\\ 0 & \text{otherwise} \end{cases}$$

Show that both iterated integrals

$$\int_0^1 dx \int_0^1 f(x, y) \, dy, \quad \int_0^1 dx \int_0^1 f(x, y) \, dy$$

exist (where all integrals are interpreted as one-dimensional Riemann integrals), but they are not equal.

4. Let $R = [-1, 1] \times [-1, 1]$ and $f : R \to \mathbb{R}$ given by

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^2} & (x,y) \neq (0,0) \\ 0 & \text{otherwise} \end{cases}$$

Show that both iterated integrals

$$\int_{-1}^{1} dx \int_{-1}^{1} f(x, y) \, dy, \quad \int_{-1}^{1} dx \int_{-1}^{1} f(x, y) \, dy$$

exist (where all integrals are interpreted as one-dimensional Riemann integrals) and are equal, but $\int_R f$ does not exist. In fact, show that even $\int_{(0,1)\times(0,1)} f$ does not exists in the improper sense.

5. Let $A \subset \mathbb{R}^3$ be given by

$$A = \{(x_1, x_2, x_3) : x_1^2 + x_2^2 \le 1 \text{ and } x_1^2 + x_3^2 \le 1\}.$$

(This set is the intersection of two solid cylinders.) Prove that A is Jordan measurable and compute $Vol_3(A)$. Carefully verify that hypotheses of relevant theorems apply.

6. Let $f(x,y) = 1/(y+1)^2$, $A = \{(x,y) \in \mathbb{R}^2 : x > 0, x < y < 2x\}$ and $B = \{(x,y) \in \mathbb{R}^2 : x > 0, x^2 < y < 2x^2\}$. For each of the two improper integrals $\int_A f$ and $\int_B f$, verify if it exists and, if it does, compute it (by computer, if possible).

7. Bipolar coordinates in \mathbb{R}^4 . Consider the coordinate change in \mathbb{R}^4 given by $(x_1, x_2, x_3, x_4) = (r_1 \cos \theta_1, r_1 \sin \theta_1, r_2 \cos \theta_2, r_2 \sin \theta_2)$, where (r_1, θ_1) are polar coordinates in x_1x_2 -plane and (r_2, θ_2) are polar coordinates in x_3x_4 -plane. Let $S = \{(x_1, x_2, x_3, x_4) : x_1^2 + x_2^2 \leq 1, x_3^2 + x_4^2 \leq 1\}$. Compute the four-dimensional integral

$$\int_S x_1^2 \, dx.$$

8. Let $S = \{(x, y) : x \ge 0, y \ge 0, x + y \le 1\}$. Let

$$f(x,y) = \begin{cases} e^{\frac{y-x}{y+x}} & x+y \neq 0\\ 0 & \text{otherwise} \end{cases}$$

Show that that f is Riemann integrable on S and compute $\int_S f$.

Brief solutions

1. (a) No, let f be the characteristic function of the set in Problem 1 on Discussion 6. Both iterated integrals are clearly 0, yet the set and its complement are dense in R.

(b) No. For example, f(x,0) could be Dirichlet function and f(x,y) = 0 when y > 0. This is an integrable function, with $\int_R f = 0$.

(c) No. For example f is constant 1 on R, and A the set of rational points in R. Then $\overline{A} = R$, but $f\chi_A$ is not integrable on R.

(d) Yes. The diagonal line D (as a graph of a continuous function) has measure 0. It is also a closed set, thus Jordan measurable. Thus $f\chi_D$ is integrable and thus $\int_D f = 0$.

2. Let $S = \{(x, y) \in \mathbb{R}^2 : x \in [0, 1], \sqrt{x} \le y \le 1\}$. This is clearly a Jordan region and $f(x, y) = \sin\left(\frac{y^3+1}{2}\right)$ is a continuous function on S. Therefore the integral above is $\int_S f$ and we may evaluate it in any order. Reversing the order, we get,

$$\int_0^1 dy \int_0^{y^2} \sin\left(\frac{y^3+1}{2}\right) dx = \int_0^1 \sin\left(\frac{y^3+1}{2}\right) y^2 dy = \frac{2}{3} \int_{1/2}^1 \sin z \, dz = \frac{2}{3} \left(\cos(1/2) - \cos 1\right).$$

3. Consider

$$\int_0^1 dx \int_0^1 f(x,y) \, dy.$$

We will show that the integral $g(x) = \int_0^1 f(x, y) \, dy$ exists for all $x \in [0, 1]$. Note that the existance is clear when x = 0 and g(0) = 0.

Now assume x > 0. Then the function $y \mapsto f(x, y)$ is not continuous at y = 0, but becomes continuous and differentiable everywhere if we redefine $f(x, 0) = 1/x^2$, which we may do for the purpose of existence of computation of Riemann integral $\int_0^1 f(x, y) \, dy$. Then $f(x, y) = \frac{\partial}{\partial x} \left(\frac{y}{x^2 + y^2} \right)$, and so $g(x) = \frac{1}{x^2 + 1}$. Thus

$$g(x) = \begin{cases} \frac{1}{x^2 + 1} & x \neq 0\\ 0 & x = 0 \end{cases}$$

and is clearly a bounded function on [0, 1], with

$$\int_0^1 g(x) \, dx = \frac{\pi}{4}$$

The other iterated integral equals $-\pi/4$, by the fact that f(y, x) = -f(x, y).

4. By symmetry, the two iterated integrals are equal, if they exist. Consider

$$\int_{-1}^{1} dx \int_{-1}^{1} f(x, y) \, dy.$$

Note that f(x, y) = 0 whenever y = 0. Thus, for all $x \in [-1, 1]$, the integral $g(x) = \int_0^1 f(x, y) dy$ exists as a Riemann integral of a continuous function, and is in fact equal to 0 as integral of an odd function. Thus g(x) = 0 for every x and both iterated integrals are 0.

Clearly f is not bounded, so $\int_R f$ cannot exist as a proper Riemann integral. For $\int_{(0,1)\times(0,1)} f$, pick a small $\epsilon > 0$ and consider $\int_{(\epsilon,1)\times(\epsilon,1)} f = \int_{[\epsilon,1]\times[\epsilon,1]} f$, which can be evaluated by Fubini, with dy integration first, to get

$$\int_{[\epsilon,1]\times[\epsilon,1]} f = \frac{1}{2} \int_{[\epsilon,1]} \left(\frac{x}{x^2 + \epsilon^2} - \frac{x}{x^2 + 1} \right) dx$$
$$= -\frac{1}{4} \left(\log(2\epsilon^2) + \log 2 - 2\log(1 + \epsilon^2) \right),$$

which clearly goes to ∞ as $\epsilon \to 0$.

5. Let $b(x) = \sqrt{1 - x^2}$. Then

$$A = \{(x_1, x_2, x_3) : x_1 \in [0, 1], x_2 \in [-b(x_1), b(x_1)], x_3 \in [-b(x_1), b(x_1)]\}$$

Now $[0,1] \subset \mathbb{R}$ is Jordan measurable, so

$$A_1 = \{(x_1, x_2) : x_1 \in [0, 1], x_2 \in [-b(x_1), b(x_1)]\} \subset \mathbb{R}^2$$

is Jordan measurable, as it is the set between two graphs of continuous functions (-b and b) on a Jordan measurable set [0, 1]. Then, with $b_1 : \mathbb{R}^2 \to \mathbb{R}$ given by $b_1(x_1, x_2) = b(x_1)$,

$$A = \{(x_1, x_2, x_3) : (x_1, x_2) \in A_1, x_3 \in [-b_1(x_1, x_2), b_1(x_1, x_2)]\}$$

is Jordan measurable, as it is the set between two graphs of continuous functions $(-b_1 \text{ and } b_1)$ on a Jordan measurable set A_1 . By the iterated integrals theorem,

$$\operatorname{Vol}_{3}(A) = \int_{A} \chi_{A} = \int_{-1}^{1} dx_{1} \int_{-1}^{1} dx_{2} \int_{-1}^{1} \chi_{A}(x_{1}, x_{2}, x_{3}) dx_{3}$$
$$= \int_{-1}^{1} dx_{1} \int_{-b(x_{1})}^{b(x_{1})} dx_{2} \int_{-b(x_{1})}^{b(x_{1})} dx_{3}$$
$$= 2 \int_{-1}^{1} dx_{1} \int_{-b(x_{1})}^{b(x_{1})} b(x_{1}) dx_{2}$$
$$= 4 \int_{-1}^{1} b(x_{1})^{2} dx_{1} = \frac{16}{3}.$$

6. Let $A_N = \{(x, y) \in \mathbb{R}^2 : x \in (0, N), x < y < 2x\}$. Then

$$\int_{A_N} f = \int_0^N dx \int_x^{2x} f(x,y) \, dy = \int_0^N \frac{x}{(x+1)(2x+1)} \, dx,$$

which goes to ∞ as $N \to \infty$ by comparison with 1/x. Analogously, we define B_N and get

$$\int_{B_N} f = \int_0^N \frac{x^2}{(x^2+1)(2x^2+1)} \, dx$$

which converges as $N \to \infty$ by comparison with $1/x^2$. The exact limit is $(1 - \sqrt{2}/2)\pi/4$.

7. The Jacobian is r_1r_2 and so the integral equals

$$\int_0^{2\pi} \cos^2 \theta_1 \, d\theta_1 \int_0^{2\pi} \, d\theta_2 \int_0^1 r_1^2 \cdot r_1 \, dr_1 \int_0^1 r_2 \, dr_2 = \frac{\pi^2}{4}.$$

8. Note that f is discontinuous at a single point (0,0) of S. Also, $|f| \le 1$ on S: if $x \le y$, then $|f| = (y-x)/(y+x) \le y/y = 1$. Riemann integrability follows.

Moreover, by change of variables u = y - x, v = y + x, we get (x, y) = ((v - u)/2, (v + u)/2), which is linear change with matrix

$$T = \begin{bmatrix} -1/2 & 1/2\\ 1/2 & 1/2 \end{bmatrix}$$

and det T = -1/2. Further, $T^{-1}S = \{(u, v) : v \in [0, 1], -v \leq u \leq v\}$. By the change of variables theorem, our integral equals

$$\frac{1}{2} \int_{T^{-1}S} e^{u/v} \, du \, dv = \frac{1}{2} \int_0^1 \, dv \int_{-v}^v e^{u/v} \, du = \frac{1}{2} \int_0^1 (e - 1/e)v \, dv = \frac{1}{4} (e - 1/e).$$