
Math 125B, Winter 2015.

Discussion problems 10

Note. These are problems on multidimensional integration.

1. Let R = [0, 1] × [0, 1] and assume f : R → R be a bounded function. For each statement below
determine, with proof, whether it is true or false for every such f .

(a) If g(x) =
∫ 1

0 f(x, y) dy exists for every x, h(y) =
∫ 1

0 f(x, y) dx exists for every y, and
∫ 1

0 g(x) dx

and
∫ 1

0 h(y) dy both exist, then
∫
R f exists.

(b) If
∫
R f exists, then g(x) =

∫ 1
0 f(x, y) dy exists for every x.

(c) If f is continuous, A ⊆ R, and
∫
Ā f exists, then so does

∫
A f .

(d) If
∫
R f exists, and D = {(x, y) ∈ R : x = y} then

∫
D f = 0.

2. Evaluate the iterated integral ∫ 1

0
dx

∫ 1

√
x

sin

(
y3 + 1

2

)
dy.

3. Let R = [0, 1]× [0, 1] and f : R→ R given by

f(x, y) =

{
x2−y2

(x2+y2)2
x 6= 0 and y 6= 0

0 otherwise

Show that both iterated integrals∫ 1

0
dx

∫ 1

0
f(x, y) dy,

∫ 1

0
dx

∫ 1

0
f(x, y) dy

exist (where all integrals are interpreted as one-dimensional Riemann integrals), but they are not
equal.

4. Let R = [−1, 1]× [−1, 1] and f : R→ R given by

f(x, y) =

{
xy

(x2+y2)2
(x, y) 6= (0, 0)

0 otherwise

Show that both iterated integrals∫ 1

−1
dx

∫ 1

−1
f(x, y) dy,

∫ 1

−1
dx

∫ 1

−1
f(x, y) dy

exist (where all integrals are interpreted as one-dimensional Riemann integrals) and are equal, but∫
R f does not exist. In fact, show that even

∫
(0,1)×(0,1) f does not exists in the improper sense.
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5. Let A ⊂ R3 be given by

A = {(x1, x2, x3) : x2
1 + x2

2 ≤ 1 and x2
1 + x2

3 ≤ 1}.

(This set is the intersection of two solid cylinders.) Prove that A is Jordan measurable and compute
Vol3(A). Carefully verify that hypotheses of relevant theorems apply.

6. Let f(x, y) = 1/(y + 1)2, A = {(x, y) ∈ R2 : x > 0, x < y < 2x} and B = {(x, y) ∈ R2 : x > 0, x2 <
y < 2x2}. For each of the two improper integrals

∫
A f and

∫
B f , verify if it exists and, if it does,

compute it (by computer, if possible).

7. Bipolar coordinates in R4. Consider the coordinate change in R4 given by (x1, x2, x3, x4) =
(r1 cos θ1, r1 sin θ1, r2 cos θ2, r2 sin θ2), where (r1, θ1) are polar coordinates in x1x2-plane and (r2, θ2)
are polar coordinates in x3x4-plane. Let S = {(x1, x2, x3, x4) : x2

1 + x2
2 ≤ 1, x2

3 + x2
4 ≤ 1}. Compute

the four-dimensional integral ∫
S
x2

1 dx.

8. Let S = {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1}. Let

f(x, y) =

{
e

y−x
y+x x+ y 6= 0

0 otherwise

Show that that f is Riemann integrable on S and compute
∫
S f .
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Brief solutions

1. (a) No, let f be the characteristic function of the set in Problem 1 on Discussion 6. Both iterated
integrals are clearly 0, yet the set and its complement are dense in R.

(b) No. For example, f(x, 0) could be Dirichlet function and f(x, y) = 0 when y > 0. This is an
integrable function, with

∫
R f = 0.

(c) No. For example f is constant 1 on R, and A the set of rational points in R. Then Ā = R, but
fχA is not integrable on R.

(d) Yes. The diagonal line D (as a graph of a continuous function) has measure 0. It is also a closed
set, thus Jordan measurable. Thus fχD is integrable and thus

∫
D f = 0.

2. Let S = {(x, y) ∈ R2 : x ∈ [0, 1],
√
x ≤ y ≤ 1}. This is clearly a Jordan region and f(x, y) =

sin
(
y3+1

2

)
is a continuous function on S. Therefore the integral above is

∫
S f and we may evaluate it

in any order. Reversing the order, we get,∫ 1

0
dy

∫ y2

0
sin

(
y3 + 1

2

)
dx =

∫ 1

0
sin

(
y3 + 1

2

)
y2 dy =

2

3

∫ 1

1/2
sin z dz =

2

3
(cos(1/2)− cos 1) .

3. Consider ∫ 1

0
dx

∫ 1

0
f(x, y) dy.

We will show that the integral g(x) =
∫ 1

0 f(x, y) dy exists for all x ∈ [0, 1]. Note that the existance is
clear when x = 0 and g(0) = 0.

Now assume x > 0. Then the function y 7→ f(x, y) is not continuous at y = 0, but becomes
continuous and differentiable everywhere if we redefine f(x, 0) = 1/x2, which we may do for the

purpose of existence of computation of Riemann integral
∫ 1

0 f(x, y) dy. Then f(x, y) = ∂
∂x

(
y

x2+y2

)
,

and so g(x) = 1
x2+1

. Thus

g(x) =

{
1

x2+1
x 6= 0

0 x = 0

and is clearly a bounded function on [0, 1], with∫ 1

0
g(x) dx =

π

4
.

The other iterated integral equals −π/4, by the fact that f(y, x) = −f(x, y).

4. By symmetry, the two iterated integrals are equal, if they exist. Consider∫ 1

−1
dx

∫ 1

−1
f(x, y) dy.

Note that f(x, y) = 0 whenever y = 0. Thus, for all x ∈ [−1, 1], the integral g(x) =
∫ 1

0 f(x, y) dy
exists as a Riemann integral of a continuous function, and is in fact equal to 0 as integral of an odd
function. Thus g(x) = 0 for every x and both iterated integrals are 0.
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Clearly f is not bounded, so
∫
R f cannot exist as a proper Riemann integral. For

∫
(0,1)×(0,1) f ,

pick a small ε > 0 and consider
∫

(ε,1)×(ε,1) f =
∫

[ε,1]×[ε,1] f , which can be evaluated by Fubini, with dy
integration first, to get ∫

[ε,1]×[ε,1]
f =

1

2

∫
[ε,1]

(
x

x2 + ε2
− x

x2 + 1

)
dx

= −1

4

(
log(2ε2) + log 2− 2 log(1 + ε2)

)
,

which clearly goes to ∞ as ε→ 0.

5. Let b(x) =
√

1− x2. Then

A = {(x1, x2, x3) : x1 ∈ [0, 1], x2 ∈ [−b(x1), b(x1)], x3 ∈ [−b(x1), b(x1)]}.

Now [0, 1] ⊂ R is Jordan measurable, so

A1 = {(x1, x2) : x1 ∈ [0, 1], x2 ∈ [−b(x1), b(x1)]} ⊂ R2

is Jordan measurable, as it is the set between two graphs of continuous functions (−b and b) on a
Jordan measurable set [0, 1]. Then, with b1 : R2 → R given by b1(x1, x2) = b(x1),

A = {(x1, x2, x3) : (x1, x2) ∈ A1, x3 ∈ [−b1(x1, x2), b1(x1, x2)]}

is Jordan measurable , as it is the set between two graphs of continuous functions (−b1 and b1) on a
Jordan measurable set A1. By the iterated integrals theorem,

Vol3(A) =

∫
A
χA =

∫ 1

−1
dx1

∫ 1

−1
dx2

∫ 1

−1
χA(x1, x2, x3) dx3

=

∫ 1

−1
dx1

∫ b(x1)

−b(x1)
dx2

∫ b(x1)

−b(x1)
dx3

= 2

∫ 1

−1
dx1

∫ b(x1)

−b(x1)
b(x1) dx2

= 4

∫ 1

−1
b(x1)2 dx1 =

16

3
.

6. Let AN = {(x, y) ∈ R2 : x ∈ (0, N), x < y < 2x}. Then∫
AN

f =

∫ N

0
dx

∫ 2x

x
f(x, y) dy =

∫ N

0

x

(x+ 1)(2x+ 1)
dx,

which goes to ∞ as N →∞ by comparison with 1/x. Analogously, we define BN and get∫
BN

f =

∫ N

0

x2

(x2 + 1)(2x2 + 1)
dx,

which converges as N →∞ by comparison with 1/x2. The exact limit is (1−
√

2/2)π/4.

7. The Jacobian is r1r2 and so the integral equals∫ 2π

0
cos2 θ1 dθ1

∫ 2π

0
dθ2

∫ 1

0
r2

1 · r1 dr1

∫ 1

0
r2 dr2 =

π2

4
.
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8. Note that f is discontinuous at a single point (0, 0) of S. Also, |f | ≤ 1 on S: if x ≤ y, then
|f | = (y − x)/(y + x) ≤ y/y = 1. Riemann integrability follows.

Moreover, by change of variables u = y−x, v = y+x, we get (x, y) = ((v−u)/2, (v+u)/2), which
is linear change with matrix

T =

[
−1/2 1/2
1/2 1/2

]
and detT = −1/2. Further, T−1S = {(u, v) : v ∈ [0, 1],−v ≤ u ≤ v}. By the change of variables
theorem, our integral equals

1

2

∫
T−1S

eu/v du dv =
1

2

∫ 1

0
dv

∫ v

−v
eu/v du =

1

2

∫ 1

0
(e− 1/e)v dv =

1

4
(e− 1/e).
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