Discussion problems 2

Note. These are problems on the definition of Riemann integral and integrable functions.

1. Assume that $f : [0, 1] \rightarrow \mathbb{R}$ is bounded. Determine, with proof, whether each statement below is true or false.
 (a) If $U(f, P) = L(f, P)$ for some partition P of $[0, 1]$, then f is constant.
 (b) If f is continuous on $(0, 1)$, then it is integrable.
 (c) If f is continuous on $[0, 0.99]$, then it is integrable.
 (d) If $\frac{1}{n} \sum_{k=1}^{n} f(k/n)$ converges as $n \to \infty$, then f is integrable.
 (e) If f is integrable, then $\frac{1}{n} \sum_{k=1}^{n} f(k/n)$ converges as $n \to \infty$.
 (f) If f is integrable, $U(f, P_n)$ converges to $\int_{a}^{b} f(x) \, dx$ for any sequence of partitions P_n whose norms go to 0.

2. Suppose that $f : [a, b] \rightarrow \mathbb{R}$, $f \geq 0$ but not necessarily bounded.
 (a) Show that $L(f, P)$ is finite for any partition P.
 (b) Show that for $f : [0, 1] \rightarrow \mathbb{R}$, given by $f(x) = \begin{cases} 1/x & x > 0 \\ 0 & x = 0 \end{cases}$, the supremum over all partitions $\sup_{P} L(f, P)$ equals ∞.
Brief solutions

1. (a) Yes. Assume \(0 = x_0 < x_1 < \cdots < x_n = 1 \) is a partition and \(L(f, P) = U(f, P). \) Then \(\inf_{[x_{j-1}, x_j]} f = \sup_{[x_{j-1}, x_j]} f \) for \(j = 1, \ldots, n, \) and so \(f \) is a constant \(c_j \) on \([x_{j-1}, x_j]. \) For \(j = 1, \ldots, n-1, \) \([x_{j-1}, x_j] \) and \([x_j, x_{j+1}] \) share a point and so \(c_j = c_{j+1}. \) Thus \(c_1 = c_2 = \cdots = c_n \) and \(f \) is constant.

(b) Yes. Assume \(|f| \leq M. \) Pick an \(\epsilon > 0. \) Then \(f \) is integrable on \([\epsilon/(8M), 1 - \epsilon/(8M)] \) (as it is continuous there) and so there exists a partition \(P' \) of \([\epsilon/(8M), 1 - \epsilon/(8M)] \) so that \(U(f, P') - L(f, P') < \epsilon/2. \) Form the partition \(P = P' \cup \{0, 1\} \) of \([0, 1].\) Let \(P \) be given by \(n \) points

\[
0 = x_0 < \epsilon/(8M) = x_1 < x_2 < \cdots < 1 - \epsilon/(8M) = x_{n-1} < x_n = 1.
\]

Then on the first interval given by the partition \(P \) \(\sup_{[x_0, x_1]} f - \inf_{[x_0, x_1]} f \Delta x_1 < 2M \cdot \epsilon/(8M) = \epsilon/4 \) and the analogous inequality holds for the last interval. Thus

\[
U(f, P) - L(f, P) \leq 2\epsilon/4 + U(f, P') - L(f, P') < \epsilon/2 + \epsilon/\epsilon = \epsilon.
\]

(c) No. Fix any \(\beta < 1, \) in our case we can take, say, \(\beta = 0.991. \) Take a function \(f \) such that \(f(x) = 0 \) unless \(x \) is a rational number in \([\beta, 1], \) in which case \(f(x) = 1. \) This is a continuous function on \([0, \beta].\)

For any partition \(P, \) \(\sup f = 1 \) and \(\inf f = 0, \) on all intervals that intersect \([\beta, 1]. \) Thus \(L(f, P) = 0 \) and \(U(f, P) \geq 1 - \beta. \)

(d) No. Take Dirichlet function \(f, \) for which \(f(x) = 1 \) when \(x \) is rational and 0 otherwise. The sum then equals 1 for every \(n \) (as \(k/n \in \mathbb{Q}, \) but \(f \) is not integrable.

(e) Yes. The sum is a Riemann sum with evaluations at right endpoints and norm \(1/n \to 0. \) Thus it converges to \(\int_0^1 f. \)

(f) Yes. For an partition \(P_n \) with \(m \) intervals, and for any interval \(I_j \) generated by \(P_n, \) choose \(c_j \in I_j \) so that \(f(c_j) \geq \sup_{I_j} f - 1/n. \) Thus

\[
\sum_{j=1}^{m} f(c_j) \Delta x_j \geq \sum_{j=1}^{m} \sup_{I_j} f \Delta x_j - \sum_{j=1}^{m} \frac{1}{n} \Delta x_j = U(f, P_n) - \frac{1}{n}.
\]

Therefore

\[
\sum_{j=1}^{m} f(c_j) \Delta x_j \geq U(f, P_n) \geq \sum_{j=1}^{m} f(c_j) \Delta x_j + \frac{1}{n}
\]

and the lower bound and the upper bound both converge to \(\int_0^1 f. \)

2. (a) Observe that \(\inf_{I_j} f \) is finite for any \(I_j \) as \(f \) is bounded below by 0. Thus \(L(f, P) \) is finite.

(b) Take equidistant partition of \([0, 1] \) into \(n \) intervals. For \(j \geq 2, \) the minimum on \([(j-1)/n, j/n] \) is \(n/j, \) while for \(j = 1 \) it is 0. Thus \(L(f, P) = \sum_{j=2}^{n} \frac{n}{j} \cdot \frac{1}{n} = \sum_{j=2}^{n} \frac{1}{j} \to \infty, \) by divergence of the harmonic series.