Math 125B, Winter 2015.

Discussion problems 2

Note. These are problems on the definition of Riemann integral and integrable functions.

1. Assume that $f:[0,1] \to \mathbb{R}$ is bounded. Determine, with proof, whether each statement below is true or false.

(a) If U(f, P) = L(f, P) for some partition P of [0, 1], then f is constant.

(b) If f is continuous on (0, 1), then it is integrable.

(c) If f is continuous on [0, 0.99], then it is integrable.

(d) If $\frac{1}{n} \sum_{k=1}^{n} f(k/n)$ converges as $n \to \infty$, then f is integrable.

(e) If f is integrable, then $\frac{1}{n} \sum_{k=1}^{n} f(k/n)$ converges as $n \to \infty$.

(f) If f is integrable, $U(f, P_n)$ converges to $\int_a^b f(x) dx$ for any sequence of partitions P_n whose norms go to 0.

- 2. Suppose that $f:[a,b] \to \mathbb{R}, f \ge 0$ but not necessarily bounded.
- (a) Show that L(f, P) is finite for any partition P.

(b) Show that for $f : [0,1] \to \mathbb{R}$, given by $f(x) = \begin{cases} 1/x & x > 0 \\ 0 & x = 0 \end{cases}$, the supremum over all partitions $\sup_{P} L(f, P)$ equals ∞ .

Brief solutions

1. (a) Yes. Assume $0 = x_0 < x_1 < \cdots < x_n = 1$ is a partition and L(f, P) = U(f, P). Then $\inf_{[x_{j-1}, x_j]} f = \sup_{[x_{j-1}, x_j]} f$ for $j = 1, \ldots, n$, and so f is a constant c_j on $[x_{j-1}, x_j]$. For $j = 1, \ldots, n-1$, $[x_{j-1}, x_j]$ and $[x_j, x_{j+1}]$ share a point and so $c_j = c_{j+1}$. Thus $c_1 = c_2 = \cdots = c_n$ and f is constant. (b) Yes. Assume $|f| \leq M$. Pick an $\epsilon > 0$. Then f is integrable on $[\epsilon/(8M), 1 - \epsilon/(8M)]$ (as it is continuous there) and so there exists a partition P' of $[\epsilon/(8M), 1 - \epsilon/(8M)]$ so that $U(f, P') - L(f, P') < \epsilon/2$. Form the partition $P = P' \cup \{0, 1\}$ of [0, 1]. Let P be given by n points

$$0 = x_0 < \epsilon/(8M) = x_1 < x_2 < \dots < 1 - \epsilon/(8M) = x_{n-1} < x_n = 1.$$

Then on the first interval given by the partition $P(\sup_{[x_0,x_1]} f - \inf_{[x_0,x_1]} f)\Delta x_1 < 2M \cdot \epsilon/(8M) = \epsilon/4$ and the analogous inequality holds for the last interval. Thus

$$U(f,P) - L(f,P) \le 2\epsilon/4 + U(f,P') - L(f,P') < \epsilon/2 + \epsilon/ = \epsilon.$$

(c) No. Fix any $\beta < 1$, in our case we can take, say, $\beta = 0.991$. Take a function f such that is f(x) = 0unless x is a rational number in $[\beta, 1]$, in which case f(x) = 1. This is a continuous function on $[0, \beta)$. For any partition P, sup f = 1 and inf f = 0, on all intervals that intersect $[\beta, 1]$. Thus L(f, P) = 0and $U(f, P) \ge 1 - \beta$.

(d) No. Take Dirichlet function f, for which f(x) = 1 when x is rational and 0 otherwise. The sum then equals 1 for every n (as $k/n \in \mathbb{Q}$), but f is not integrable.

(e) Yes. The sum is a Riemann sum with evaluations at right endpoints and norm $1/n \to 0$. Thus it converges to $\int_0^1 f$.

(f) Yes. For an partition P_n with m intervals, and for any interval I_j generated by P_n , choose $c_j \in I_j$ so that $f(c_j) \ge \sup_{I_j} f - 1/n$. Thus

$$\sum_{j=1}^{m} f(c_j) \,\Delta x_j \ge \sum_{j=1}^{m} \sup_{I_j} f \,\Delta x_j - \sum_{j=1}^{m} \frac{1}{n} \,\Delta x_j = U(f, P_n) - \frac{1}{n}.$$

Therefore

$$\sum_{j=1}^{m} f(c_j) \,\Delta x_j \leq U(f, P_n) \leq \sum_{j=1}^{m} f(c_j) \,\Delta x_j + \frac{1}{n}$$

and the lower bound and the upper bound both converge to $\int_0^1 f$.

2. (a) Observe that $\inf_{I_j} f$ is finite for any I_j as f is bounded below by 0. Thus L(f, P) is finite. (b) Take equidistant partition of [0, 1] into n intervals. For $j \ge 2$, the minimum on [(j - 1)/n, j/n] is n/j, while for j = 1 it is 0. Thus $L(f, P) = \sum_{j=2}^{n} \frac{n}{j} \cdot \frac{1}{n} = \sum_{j=2}^{n} \frac{1}{j} \to \infty$, by divergence of the harmonic series.