
Math 125B, Winter 2015.

Discussion problems 3

Note. These are problems on the properties of Riemann integral and integrable functions.

1. Assume f : [a, b]→ R is bounded and integrable, and [c, d] ⊂ [a, b]. Determine, with proof, whether
each statement below is true or false.

(a) Is f integrable on [c, d]?

(b) If
∫ b
a f ≥

∫ d
c f?

(c) If f ≥ 0, is
∫ b
a f ≥

∫ d
c f?

2. The Thomae function T : [0, 1]→ R is defined as follows

T (x) =

{
0 x /∈ Q or x = 0 or x = 1

1/q x = p/q < 1, for p, q ∈ N with gcd(p, q) = 1

The figure below is a graph of T . (It is what you would see if you looked from (0, 0, 0) into the
“orchard” of “trees” — stalks of equal height — “planted” at all points of N× N× {0}.)

(a) Show that T is discontinuous at every rational number in (0, 1) and continuous otherwise.

(b) Show that T is integrable with
∫ 1
0 T = 0.

(c) Define f : [0, 1]→ R as follows

f(x) =

{
0 x = 0

1 x > 0

Show that f and T are both integrable, but the composite function f ◦ T is not.

3. Assume that f : [a, b]→ R is integrable.

(a) Assume that f is continuous, that f ≥ 0, (i.e., that f(x) ≥ 0 for all x) and that
∫ b
a f = 0. Show

that f = 0.
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(b) Is the conclusion still correct if the continuity assumption is dropped?

(c) Assume that f is continuous, and that
∫ b
a f =

∫ b
a |f |. Show that f ≥ 0.

4. Assume f1, f2 : [a, b]→ R are integrable and S ⊂ [a, b] is dense in [a, b]. Assume f1(x) = f2(x) for

every x ∈ S. Prove that
∫ b
a f1 =

∫ b
a f2.

5. (a) Assume you have ` + 1 real numbers a0 < a1 < a2 < · · · < a`. Assume that a function
f : [a0, a`] → R is bounded and is integrable on any interval [c, d] ⊂ [a0, a`] that contains no ai,
i = 0, . . . , `. Show that f is integrable on [a0, a`].

(b) Assume that f : [a, b] → R is bounded and its sets of discontinuities is finite. Prove that f is
integrable.

6. (a) Assume that f : [a, b] → R is integrable, and that g : [a, b] → R differs from f at only finitely

many points. Show that g is integrable and
∫ b
a f =

∫ b
a g.

(b) Assume that f : [a, b]→ R is piecewise constant, that is, there exist numbers a = a0 < a1 < a2 <

· · · < a` = b and ci ∈ R so that f = ci on (ai−1, ai) for i = 1, . . . , `. Show that
∫ b
a f =

∑`
i=1 ci(ai−ai−1).

7. Assume you have n intervals I1, . . . , In ⊂ [0, 4]. They could be open, half-closed, or closed, but the
sum of their lengths is at least 125. Show that there exists a point in [0, 1] that is covered by at least
32 of these intervals.
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Brief solutions

1. (a) Yes. Divide [a, b] = [a, c]∪ [c, d]∪ [d, b]. The function is integrable on each of the three intervals
(or, more precisely, on those of the three that are nondegenerate) by the domain additivity theorem,
proved in the lecture.

(b) No. Take [a, b] = [−1, 1], [c, d] = [0, 1]. f(x) = x. Then
∫ b
a f = 0, but

∫ d
c f = 1

(c) Yes. Divide [a, b] as in (a). Assume all three integrals are nondegenerate, otherwise the proof

is even simpler. Then, by domain additivity,
∫ b
a f =

∫ c
a f +

∫ d
c f +

∫ b
d f and then by monotonicity∫ c

a f ≥ 0 and
∫ d
c f ≥ 0, which finishes the proof.

2. (a) Assume that x ∈ (0, 1) is a rational number. Then T (x) > 0 but there is a sequence of irrational
numbers xn with xn → x and T (xn) = 0. Thus T is discontinuous at x.

Now assume that x is irrational or 0 or 1. Assume that xn ∈ [0, 1] converge to x. We need to
show that T (xn)→ 0. At irrational xn, T (xn) = 0, so we may assume that all xn are rational. Write
xn = pn/qn as a reduced fraction, that is, so that gcd(pn, qn) = 1. Then T (xn) = 1/qn and we need
to show that qn → ∞. Assume not. Then a subsequence of (xn), which we may assume to be the
full sequence, has bounded qn, say 2 ≤ qn ≤ K. But there are only finitely many reduced fractions in
[0, 1] with denominators at most K; as xn converges and its elements are chosen from a finite set, it
must be eventually constant. But then x = limxn ∈ Q and x 6= 0, x 6= 1. This contradiction shows
that T (xn)→ 0 = T (x) and that T is continuous at x.

(b) As irrational numbers are dense in [0, 1], L(T, P ) = 0 for any partition P , thus L(T ) = 0. Pick
an ε > 0. We will find a partition P so that U(f, P ) < ε. Note first that max f = 1/2. Pick K large
enough so that 1/K < ε/2. Let S be the set of reduced fractions with denominators at most K, and
N the number of elements of S. Choose any partition P , given by 0 = x0 < x1 < · · · < xn = 1,
with norm ||P || < ε/(4N). Any partition has at most 2N intervals which include at least one element
of S. Together, those contribute at most (max f) · 2N · ||P || = ε/4 to U(f, P ). The remaining
intervals contain no elements of S and so T is bounded above by 1/K on each of them; therefore they
contribute at most 1/K

∑n
j=1 ∆xj = 1/K < ε/2 to U(f, P ). Therefore U(T, P ) < 3ε/4 < ε. It follows

that U(T ) ≤ U(T, P ) < ε, and then U(T ) = 0 = L(T ).

(c) We showed in class that
∫ 1
0 (1− f) = 0, so f = 1− (1− f) is integrable with

∫ 1
0 f = 1. (This also

follows from Problem 6(b).) We showed in (b) that T is integrable. Finally, f ◦ T (x) is 1 when x is
a nonzero rational number and 1 otherwise. So it differs from the Dirichlet function only at 0 and 1,
and is not integrable by the same argument.

3. (a) If it is not true that f = 0, then there exists a number x0 ∈ [a, b] so that f(x0) > 0. Let
α = f(x0)/2. By continuity, there exists a δ > 0 so that f(x) ≥ α for x ∈ [x0 − δ, x0 + δ]. Then, by
Problem 1(c) and monotonicity,∫ b

a
f ≥

∫ x0+δ

x0−δ
f ≥

∫ x0+δ

x0−δ
α = 2δα > 0.

(b) No. The function f : [0, 1]→ R from Problem 2(c) has
∫ 1
0 f = 0.

(c) Take g = |f | − f . Then g ≥ 0 and
∫ b
a g = 0. So g = 0, and so f = |f | ≥ 0.

4. Let Ri =
∫ b
a fi. Fix an ε > 0. Then there is a δ > 0 so that ||P || < δ implies |S(fi, P, C)−Ri| < ε/2

for every tag set C. For any partition ||P ||, choose C so that all ci ∈ S, which can be done since S is
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dense. Then S(f1, P, C) = S(f2, P, C). Then

|R1 −R2| = |R1 − S(f1, P, C) + S(f2, P, C)−R2|
≤ |R1 − S(f1, P, C)|+ |S(f2, P, C)−R2| < ε/2 + ε/2 = ε.

As this is true for every ε > 0, R1 = R2.

5. (a) It is enough to show this for ` = 2; the general case then follows by induction. Then this
becomes a very similar to Problem 1(b) on Discussion Problems 2, but nevertheless we repeat the
proof. Assume |f | ≤ M . Pick an ε > 0. Then f is integrable on [a1 + ε/(8M), a2 − ε/(8M)], and
so there exists a partition P ′ of [ε/(8M), 1 − ε/(8M)] so that U(f, P ′) − L(f, P ′) < ε/2. Form the
partition P = P ′ ∪ {a1, a2} of [a1, a2]. If [x0, x1] is the first interval given by the partition P , we have

( sup
[x0,x1]

f − inf
[x0,x1]

f)∆x1 < 2M · ε/(8M) = ε/4

and the analogous inequality holds for the last interval. Thus U(f, P )− L(f, P ) ≤ 2ε/4 + ε/2 = ε.

(b) Let a1, . . . , a`−1 be the discontinuities of f inside (a, b) and a0 = a, a` = b. Then clearly (a)
applies.

6. (a) Integrability follows from Problem 5. Equality of integrals follows from Problem 4.

(b) By domain additivity. ∫ b

a
f =

∑̀
i=1

∫ xi

xi−1

f.

Then, ∫ xi

xi−1

f =

∫ xi

xi−1

ci,

by (a), as f and ci may only differ at the endpoints of [xi−1, xi]. Finally, the last integral of a constant
function equals ci(xi − xi−1).

7. Let fk : [0, 4]→ R be given by

fk(x) =

{
1 x ∈ Ik
0 otherwise

.

These are integrable functions by Problem 5(b). If the claim is not true,
∑
fk < 32, so in fact∑

fk ≤ 31. Then, by monotonicity,
∫ 4
0

∑
fk ≤ 4 · 31 = 124. By additivity, and because

∫ 4
0 fk = |Ik|

by Problem 6(b),
∫ 4
0

∑
fk =

∑∫ 4
0 fk =

∑
|Ik| ≥ 125, contradiction.
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