
Math 125B, Winter 2015.

Discussion problems 4

Note. These are problems on the theorems about the Riemann integral.

1. Assume f : [a, b] → R is Riemann integrable, and F (x) =
∫ x
a f(t) dt. Determine, with proof,

whether each statement below is true or false.

(a) If Ik ⊂ [a, b] is a sequence of closed intervals with limk→∞ |Ik| → 0, then limk→∞
∫
Ik
f → 0.

(b) F is differentiable for every x ∈ (a, b)

(c) If f is strictly increasing (i.e., x < y =⇒ f(x) < f(y) for all x ∈ [a, b]), then there exists a unique
x0 ∈ [a, b] at which F achieves its minimum.

(d) If f is strictly increasing, then there exists a unique x0 ∈ [a, b] at which F achieves its maximum.

2. Assume f : [a, b] → R is bounded. Assume also that f is continuous on (a, b). Show that there

exists a c ∈ (a, b) so that f(c) = 1
b−a

∫ b
a f .

3. (a) Assume f : [0, 1] → R is continuous on [0, 1] and differentiable on (0, 1) with |f ′(x)| ≤ M for
all x ∈ (0, 1). Prove that ∣∣∣∣∣∣

∫ 1

0
f(x) dx− 1

n

n∑
j=1

f

(
j

n

)∣∣∣∣∣∣ ≤ M

n
.

(b) I got this problem from the book by Thomson, Bruckner and Bruckner, but their formulation does
not include the assumption that f is continuous on [0, 1]. Is the conclusion is still true?

4. Compute

lim
n→∞

n∑
i=1

n

n2 + i2
.

Make sure to carefully justify all steps!

5. Prove that 0 ≤
∫ 1
0 x
√

sinx+ 3x dx ≤ 4/5.

6. Assume that f : [0, 1] → R is continuous on [0, 1], and that f ′ exists on (0, 1) and is integrable on
[0, 1]. Define

I(f) =

∫ 1

0
x2f ′(x) dx+

∫ 1

0
2xf(x) dx.

(a) Explain why both intergrals exist.

(b) Assume f(x) = (1 + x2015)6. Compute I(f) (no computer, 30 seconds).

(c) Characterize functions f for which I(f) = 0.
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Brief solutions

1.(b) Yes. Let M = sup[a,b] |f |. Then |
∫
Ik
f | ≤

∫
Ik
|f | ≤M |Ik| → 0.

(b) No. Let f(x) be 1 when x > 0 and −1 otherwise (the sign function). Then F (x) = |x| − 1, which
is not differentiable at 0.

(c) Yes. Let x0 = sup{x ∈ [a, b] : f(x) < 0}, with the proviso that x0 = a if f ≥ 0 on [a, b]. Assume
first that x0 > a and fix a c ∈ (a, x0). Then f(c) < 0. (Why? If f(c) ≥ 0, then f(x) > f(c) ≥ 0 for
all x > c, so x0 is not the supremum.) Then, for a ≤ x1 < x2 ≤ c,

F (x2)− F (x1) =

∫ x2

x1

f ≤ f(c)(x2 − x1) < 0.

This proves F is strictly decreasing on [a, c] and, as c < x0 was arbitrary, on [a, x0). Further, assume
x0 < b and fix a d ∈ (x0, b). Then f(d) > 0. (Why? If f(d) ≤ 0, then f(x) < f(d) ≤ 0 for all x < d,
so x0 is not an upper bound and thus not the supremum.) Then, for d ≤ x1 < x2 ≤ b,

F (x2)− F (x1) =

∫ x2

x1

f ≥ f(d)(x2 − x1) > 0.

This proves F is strictly increasing on [d, b] and, as d > x0 was arbitrary, on (x0, b]. We have proved
that F is strictly decreasing on on [a, x0) and strictly increasing on on (x0, b], so it achieves its minimum
at x0.

(d) No. Take f(x) = x on [−1, 1]. Then F (x) = x2 − 1 and F achieves its maximum at −1 and 1.

2. By the Second Fundamental Theorem of Calculus, F (x) =
∫ x
a f is continuous on [a, b], and differ-

entiable on (a, b) with F ′ = f . By the Mean Value Theorem (for the derivative), applied to F , there
is a c ∈ (a, b), such that

F ′(c) =
F (b)− f(a)

b− a
,

but F ′(c) = f(c).

3. (a) By the Mean Value Theorem, for any x ∈ [(j − 1)/n, j/n], there exists a c ∈ ((j − 1)/n, j/n) so
that f(x)− f(j/n) = f ′(c)(x− j/n). Then |f(x)− f(j/n)| = |f ′(c)| |x− j/n| ≤ M |x− j/n| ≤ M/n.
Therefore ∣∣∣∣∣

∫
[xj−1,xj ]

(f(x)− f(j/n)) dx

∣∣∣∣∣ ≤
∫
[xj−1,xj ]

|f(x)− f(j/n)| dx ≤ M

n2

and so the expression in question can be bounded by∣∣∣∣∣∣
n∑

j=1

∫
[xj−1,xj ]

(f(x)− f(j/n)) dx

∣∣∣∣∣∣ ≤
n∑

j=1

∣∣∣∣∣
∫
[xj−1,xj ]

(f(x)− f(j/n)) dx

∣∣∣∣∣ ≤ n · Mn2 .
(b) No. While f is bounded (for x ∈ (0, 1), |f(x)−f(1/2)| ≤M |x−1/2| ≤M/2 and so |f(x)| ≤ 3M/2),
and so

∫ 1
0 f(x) dx exists (Problem 1(b) in Discussion Problems 2), we have no control over f(1) which

can be changed to become arbitrarily large without affecting either
∫ 1
0 f(x) dx (by Problem 6(a) in

Discussion Problems 3) or f ′ on (0, 1), but the sum becomes arbitrarily large!

4. The sum
n∑

i=1

n

n2 + i2
=

n∑
i=1

1

1 + (i/n)2
· 1

n
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is a Riemann sum for
∫ 1
0 1/(1 + x2) dx, with equidistant partition into n intervals and tags at right

endpoints. As f(x) = 1/(1 +x2) is continuous on R, with an antiderivative arctanx, the Fundamental
Theorem of Calculus implies that

∫ 1
0 f(x) dx = arctan 1 − arctan 0 = π/4. Therefore the Riemann

sums converge to π/4.

5. Let f be the function in question. Then f ≥ 0 on [0, 1] and so
∫ 1
0 f(x) dx ≥ 0. Furthermore,

sinx ≤ x for all x ≥ 0 (e.g., by comparing derivatives) and so f(x) ≤ x
√
x+ 3x = 2x3/2. Thus∫ 1

0 f(x) dx ≤ 2
∫ 1
0 x

3/2 dx = 4/5.

6. (a) Products of integrable functions are integrable.

(b) By parts: I(f) = f(1) = 64.

(c) By parts: those functions for which f(1) = 0.
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