Math 125B, Winter 2015.

Discussion problems 5

Note. These are final problems on the Riemann integral, focusing particularly on the improper integral.

1. Assume $f : [0, \infty] \to [0, \infty)$ is continuous. For each statement below determine, with proof, whether it is true or false.

(a) If $\sum_{n=1}^{\infty} f(n) < \infty$, then $\int_0^{\infty} f(x) dx$ converges.

(b) If $\int_0^\infty f(x) dx$ converges, then f is bounded on $[0, \infty)$.

(c) If $\int_0^\infty f(x) dx$ converges and f is nonincreasing (i.e., $0 \le x_1 \le x_2$ implies $f(x_1) \ge f(x_2)$), then $\lim_{x\to\infty} f(x) = 0$.

(d) If $\int_0^\infty f(x) dx$ converges, f is differentiable on $(0, \infty)$ and f' is bounded on $(0, \infty)$, then $\lim_{x\to\infty} f(x) = 0$.

2. Prove that $\int_0^\infty \frac{e^{\sin x} \sin x}{x^2+1} dx$ converges.

3. For each integral below, determine whether it converges or not.

(a)
$$\int_0^1 ((\sin x)^{-3} - x^{-3} \cos x) dx$$

(b) $\int_0^1 x^{-10} e^{-1/x} dx$.

4. Assume $f : [0,1] \to \mathbb{R}$ is given by $f(x) = \begin{cases} x^2 & x \in \mathbb{Q} \\ x & x \notin \mathbb{Q} \end{cases}$. Compute $(U) \int_0^1 f$ and $(L) \int_0^1 f$. Does $\int_0^1 f$ exist?

5. If $f: [0,1] \to \mathbb{R}$ is integrable, show that $g: [0,1] \to \mathbb{R}$ given by $g(x) = \sqrt{x \arctan f(x) + 2}$ is integrable on [0,1]. Then let

$$A = \left\{ \int_0^1 \sqrt{x \arctan f(x) + 2} \, dx : f : [0, 1] \to \mathbb{R} \text{ is integrable} \right\} \subset \mathbb{R}$$

Compute $\inf A$ and $\sup A$.

6. Compute:

(a)
$$\lim_{n \to \infty} \int_0^{\pi/2} \frac{n \sin x}{n + \sin x} dx$$

(b) $\lim_{n \to \infty} \int_0^{1+1/n} \frac{n x^2 + x^{2015}}{n x^3 + x^2 + 4n} dx.$

7. True or false: if $f:[0,1] \to \mathbb{R}$ is continuous, then $\int_0^{\pi} f(\sin x) \cos x \, dx = 0$.

8. For x < 1, let (a) $F(x) = \int_0^x (e^{t^2} - 1) dt$, (b) $F(x) = \int_0^x \frac{e^{t} - 1}{1 - t} dt$. Compute $\alpha = \lim_{x \to 0} x^{-2} F(x)$ and $\beta = \lim_{x \to 0} x^{-3} (F(x) - \alpha x^2)$. (Advice. It is much better to determine Taylor series for F(x) up to x^3 instead of using L'Hôpital.)

Brief solutions

1. (a) No. $f(x) = |\sin(\pi x)|$ has the property that f(n) = 0 for every $n \in \mathbb{N}$. But it is a nonzero periodic function and so $\int_0^\infty f(x) dx = \infty$.

(b) No. Take the continuous function f such that, for all $n \in \mathbb{N}$, f(n) = n, f is linear on $[n, n+1/n^3]$, and on $[n-1/n^3, n]$, and 0 otherwise. Then $\int_{[n-1/n^3, n+1/n^3]} f = 1/n^2$. and so $\int_0^\infty f = \sum_{n=1}^\infty 1/n^2 < \infty$, but f is unbounded.

(c) If $\lim_{x\to\infty} f(x) = a$ exists as f is nonincreasing. If a > 0, then $f(x) \ge a$ for all x, and so $\int_0^\infty f \ge \int_0^\infty a = \infty$.

(d) Yes. If $|f'| \leq M$, then by the Mean Value Theorem $|f(x_2) - f(x_1)| = |f'(c)||x_2 - x_1| \leq M|x_2 - x_1|$ for $x_1, x_2 \geq 0$. Assume that is not true that $\lim_{x\to\infty} f(x) = 0$; then there exists an $\epsilon > 0$ and a sequence of $x_n \to \infty$, so that $f(x_n) \geq \epsilon$. We may assume that $\epsilon/M < 1$ and that x_n satisfy $x_{n+1} \geq x_n + 1$ for all $n \geq 1$. Let $I_n = [x_n - \epsilon/(2M), x_n + \epsilon/(2M)]$. The intervals I_n are pairwise disjoint. Also, as $f(x_n) \geq \epsilon, f(x) \geq \epsilon/2$ for $x \in I_n$. Thus

$$\int_0^\infty f(x) \, dx \ge \sum_{n=1}^\infty \int_{I_n} f(x) \, dx \ge \sum_{n=1}^\infty \frac{\epsilon}{2} \cdot \frac{1}{M} = \infty.$$

2. Let $f(x) = \frac{e^{\sin x} \sin x}{x^2 + 1}$. Then $|f(x)| \le \frac{e}{x^2 + 1}$ and so $\int_0^\infty f(x) dx$ converges absolutely, with $\int_0^\infty |f(x)| dx \le \frac{e\pi}{2}$. Therefore $\int_0^\infty f(x) dx$ converges.

3. (a) We use Taylor series. Let $f(x) = (\sin x)^{-3} - x^{-3} \cos x$ be the integrand. For x < 1, $\sin x = x - x^3/3 + \mathcal{O}(x^5)$, $\cos x = 1 - x^2/2 + \mathcal{O}(x^4)$, and $(1 - x)^{-3} = 1 + 3x + \mathcal{O}(x^2)$. (Here, for example, $\mathcal{O}(x^5)$ is an expression whose absolute value divided by x^5 remains bounded as $x \to 0$; in our case, such expression is bounded on, say, (0, 1/2] by Cx^5 , for some constant C.)

$$f(x) = x^{-3} \left((1 - x^2/3 + \mathcal{O}(x^4))^{-3} - 1 + x^2/2 - \mathcal{O}(x^4) \right)$$

= $x^{-3} \left(1 + x^2 + \mathcal{O}(x^4) - 1 + x^2/2 + \mathcal{O}(x^4) \right)$
= $x^{-3} \left(3x^2/2 + \mathcal{O}(x^4) \right)$
= $x^{-1} \left(3/2 + \mathcal{O}(x^2) \right)$

From this computation, there exists an $\delta > 0$ so that $f(x) \ge x^{-1}$ for $x < \delta$. But then $\int_0^{\delta} f(x) dx \ge \int_0^{\delta} x^{-1} dx = \infty$. Thus $\int_0^1 f(x) dx = \infty$. The integral diverges.

(b) By change of variable z = 1/x (and then z is renamed to x), for small a,

$$\int_{a}^{1} x^{-10} e^{-1/x} \, dx = \int_{1}^{1/a} e^{-x} x^8 \, dx$$

and the last integral converges as $a \to 0$ Since $e^x \ge x^{10}$ for large x, $e^{-x}x^{-8} \le x^{-2}$. As x^{-2} has a convergent integral on $[1, \infty)$, so does $e^{-x}x^{-8} \le x^{-2}$. Thus the limit of the above expression as $a \to 0$ exists and the integral converges.

4. Let g(x) = x, $h(x) = x^2$. Observe that $g(x) \ge h(x)$ for $x \in [0, 1]$. As \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are both dense, U(f, P) = U(g, P) and L(f, P) = U(h, P) for every partition P. Therefore, $(U) \int_0^1 f = (U) \int_0^1 g = \int_0^1 x \, dx = \frac{1}{2}$ and $(L) \int_0^1 f = (L) \int_0^1 h = \int_0^1 x^2 \, dx = \frac{1}{3}$ and the integral does not exist.

5. As $\arctan x \in (-\pi/2, \pi/2)$ for every x,

$$\int_0^1 \sqrt{x \arctan f(x) + 2} \, dx \le \int_0^1 \sqrt{x \cdot \pi/2 + 2} \, dx$$
$$= \frac{2}{\pi} \left((\pi/2 + 2)^{3/2} - 2^{3/2} \right)$$

If f = M is a constant function for some large M, then

$$\int_{0}^{1} \sqrt{x \arctan f(x) + 2} \, dx = \int_{0}^{1} \sqrt{x \cdot \arctan M + 2} \, dx$$
$$= \frac{1}{\arctan M} \left((\arctan M + 2)^{3/2} - 2^{3/2} \right)$$

But $\arctan M$ converges to $\pi/2$ as $M \to \infty$, so

$$\sup A = \frac{2}{\pi} \left(\left(\pi/2 + 2 \right)^{3/2} - 2^{3/2} \right).$$

Similarly,

$$\inf A = \int_0^1 \sqrt{2 - x \cdot \pi/2} \, dx$$
$$= \frac{2}{\pi} \left(2^{3/2} - (2 - \pi/2)^{3/2} \right)$$

6. (a) Let $f_n(x) = \frac{n \sin x}{n + \sin x}$ be the integrand function and $f(x) = \sin x$. Then

$$\sup_{x \in [0,\pi/2]} |f_n(x) - f(x)| = \sup_{x \in [0,\pi/2]} \frac{\sin^2 x}{n + \sin x} \le \frac{1}{n}$$

This proves that the sequence of functions f_n converges to f uniformly. The limit therefore equals $\int_0^{\pi/2} \sin x \, dx = 1.$

(b) Let
$$f_n(x) = \frac{nx^2 + x^{2015}}{nx^3 + x^2 + 4n} = \frac{x^2 + x^{2015}/n}{x^3 + 4 + x^2/n}$$
 be the integrand function. Clearly $f_n \ge 0$.

If $x \leq 2$ and $n \geq 1$, we can easily bound $f_n(x) \leq 2^{2016}$, and so $0 \leq \int_1^{1+1/n} f_n(x) dx \leq 2^{2016}/n \to 0$. Thus we need to find the limit of $\int_0^1 f_n(x) dx$.

Let
$$f(x) = \frac{x^2}{x^3+4}$$
. For $x \in [0,1]$,

$$|f_n(x) - f(x)| = \frac{|(x^3 + 4) \cdot x^{2015}/n - x^4/n|}{(x^3 + 4 + x^2/n)(x^3 + 4)} \le \frac{6/n}{16} \le \frac{1}{n}$$

This proves that the sequence of functions f_n converges to f uniformly on [0, 1]. The limit therefore equals $\int_0^1 f(x) dx = \frac{1}{3}(\log 5 - \log 4)$.

7. True. Use the change of variables with $g(x) = \sin x$, or directly the fundamental theorem of calculus with $F(x) = \int_0^x f$. Then the integral equals $F(\sin \pi) - F(\sin 0) = 0$.

8. (a) Since $e^{t^2} - 1 = t^2 + t^4/2 + \ldots$, with radius of convergence ∞ , we have $F(x) = x^3/3 + x^5/10 + \ldots$, with the same radius of convergence. Thus $\alpha = 0$ and $\beta = 1/3$.

(b) We have $e^t - 1 = t + t^2/2 + ...$ and $1/(1-t) = 1 + t + t^2 + ...$, first with radius of convergence ∞ and second with radius of convergence 1. Hence, for |t| < 1,

$$\frac{e^t - 1}{1 - t} = t + \frac{3}{2}t^2 + \dots$$

and so, for |x| < 1, $F(x) = x^2/2 + x^3/2 + ...$ Therefore $\alpha = 1/2$ and $\beta = 1/2$.