
Math 125B, Winter 2015.

Discussion problems 5

Note. These are final problems on the Riemann integral, focusing particularly on the improper integral.

1. Assume f : [0,∞]→ [0,∞) is continuous. For each statement below determine, with proof, whether
it is true or false.

(a) If
∑∞

n=1 f(n) <∞, then
∫∞
0 f(x) dx converges.

(b) If
∫∞
0 f(x) dx converges, then f is bounded on [0,∞).

(c) If
∫∞
0 f(x) dx converges and f is nonincreasing (i.e., 0 ≤ x1 ≤ x2 implies f(x1) ≥ f(x2)), then

limx→∞ f(x) = 0.

(d) If
∫∞
0 f(x) dx converges, f is differentiable on (0,∞) and f ′ is bounded on (0,∞), then limx→∞ f(x) =

0.

2. Prove that
∫∞
0

esin x sinx
x2+1

dx converges.

3. For each integral below, determine whether it converges or not.

(a)
∫ 1
0 ((sinx)−3 − x−3 cosx) dx,

(b)
∫ 1
0 x
−10e−1/x dx.

4. Assume f : [0, 1]→ R is given by f(x) =

{
x2 x ∈ Q
x x /∈ Q

. Compute (U)
∫ 1
0 f and (L)

∫ 1
0 f . Does

∫ 1
0 f

exist?

5. If f : [0, 1] → R is integrable, show that g : [0, 1] → R given by g(x) =
√
x arctan f(x) + 2 is

integrable on [0, 1]. Then let

A =

{∫ 1

0

√
x arctan f(x) + 2 dx : f : [0, 1]→ R is integrable

}
⊂ R

Compute inf A and supA.

6. Compute:

(a) limn→∞
∫ π/2
0

n sinx
n+sinx dx

(b) limn→∞
∫ 1+1/n
0

nx2+x2015

nx3+x2+4n
dx.

7. True or false: if f : [0, 1]→ R is continuous, then
∫ π
0 f(sinx) cosx dx = 0.

8. For x < 1, let (a) F (x) =
∫ x
0 (et

2 − 1) dt, (b) F (x) =
∫ x
0
et−1
1−t dt. Compute α = limx→0 x

−2F (x) and

β = limx→0 x
−3(F (x)− αx2). (Advice. It is much better to determine Taylor series for F (x) up to x3

instead of using L’Hôpital.)
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Brief solutions

1. (a) No. f(x) = | sin(πx)| has the property that f(n) = 0 for every n ∈ N. But it is a nonzero
periodic function and so

∫∞
0 f(x) dx =∞.

(b) No. Take the continuous function f such that, for all n ∈ N, f(n) = n, f is linear on [n, n+ 1/n3],
and on [n−1/n3, n], and 0 otherwise. Then

∫
[n−1/n3,n+1/n3] f = 1/n2. and so

∫∞
0 f =

∑∞
n=1 1/n2 <∞,

but f is unbounded.

(c) If limx→∞ f(x) = a exists as f is nonincreasing. If a > 0, then f(x) ≥ a for all x, and so∫∞
0 f ≥

∫∞
0 a =∞.

(d) Yes. If |f ′| ≤M , then by the Mean Value Theorem |f(x2)− f(x1)| = |f ′(c)||x2−x1| ≤M |x2−x1|
for x1, x2 ≥ 0. Assume that is not true that limx→∞ f(x) = 0; then there exists an ε > 0 and a sequence
of xn → ∞, so that f(xn) ≥ ε. We may assume that ε/M < 1 and that xn satisfy xn+1 ≥ xn + 1
for all n ≥ 1. Let In = [xn − ε/(2M), xn + ε/(2M)]. The intervals In are pairwise disjoint. Also, as
f(xn) ≥ ε, f(x) ≥ ε/2 for x ∈ In. Thus∫ ∞

0
f(x) dx ≥

∞∑
n=1

∫
In

f(x) dx ≥
∞∑
n=1

ε

2
· 1

M
=∞.

2. Let f(x) = esin x sinx
x2+1

. Then |f(x)| ≤ e
x2+1

and so
∫∞
0 f(x) dx converges absolutely, with

∫∞
0 |f(x)| dx ≤

eπ
2 . Therefore

∫∞
0 f(x) dx converges.

3. (a) We use Taylor series. Let f(x) = (sinx)−3 − x−3 cosx be the integrand. For x < 1, sinx =
x − x3/3 + O(x5), cosx = 1 − x2/2 + O(x4), and (1 − x)−3 = 1 + 3x + O(x2). (Here, for example,
O(x5) is an expression whose absolute value divided by x5 remains bounded as x → 0; in our case,
such expression is bounded on, say, (0, 1/2] by Cx5, for some constant C.)

f(x) = x−3
(
(1− x2/3 +O(x4))−3 − 1 + x2/2−O(x4)

)
= x−3

(
1 + x2 +O(x4)− 1 + x2/2 +O(x4)

)
= x−3

(
3x2/2 +O(x4)

)
= x−1

(
3/2 +O(x2)

)
From this computation, there exists an δ > 0 so that f(x) ≥ x−1 for x < δ. But then

∫ δ
0 f(x) dx ≥∫ δ

0 x
−1 dx =∞. Thus

∫ 1
0 f(x) dx =∞. The integral diverges.

(b) By change of variable z = 1/x (and then z is renamed to x), for small a,∫ 1

a
x−10e−1/x dx =

∫ 1/a

1
e−xx8 dx

and the last integral converges as a → 0 Since ex ≥ x10 for large x, e−xx−8 ≤ x−2. As x−2 has a
convergent integral on [1,∞), so does e−xx−8 ≤ x−2. Thus the limit of the above expression as a→ 0
exists and the integral converges.

4. Let g(x) = x, h(x) = x2. Observe that g(x) ≥ h(x) for x ∈ [0, 1]. As Q and R \Q are both dense,
U(f, P ) = U(g, P ) and L(f, P ) = U(h, P ) for every partition P . Therefore, (U)

∫ 1
0 f = (U)

∫ 1
0 g =∫ 1

0 x dx = 1
2 and (L)

∫ 1
0 f = (L)

∫ 1
0 h =

∫ 1
0 x

2 dx = 1
3 and the integral does not exist.
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5. As arctanx ∈ (−π/2, π/2) for every x,∫ 1

0

√
x arctan f(x) + 2 dx ≤

∫ 1

0

√
x · π/2 + 2 dx

=
2

π

(
(π/2 + 2)3/2 − 23/2

)
.

If f = M is a constant function for some large M , then∫ 1

0

√
x arctan f(x) + 2 dx =

∫ 1

0

√
x · arctanM + 2 dx

=
1

arctanM

(
(arctanM + 2)3/2 − 23/2

)
.

But arctanM converges to π/2 as M →∞, so

supA =
2

π

(
(π/2 + 2)3/2 − 23/2

)
.

Similarly,

inf A =

∫ 1

0

√
2− x · π/2 dx

=
2

π

(
23/2 − (2− π/2)3/2

)
6. (a) Let fn(x) = n sinx

n+sinx be the integrand function and f(x) = sinx. Then

sup
x∈[0,π/2]

|fn(x)− f(x)| = sup
x∈[0,π/2]

sin2 x

n+ sinx
≤ 1

n

This proves that the sequence of functions fn converges to f uniformly. The limit therefore equals∫ π/2
0 sinx dx = 1.

(b) Let fn(x) = nx2+x2015

nx3+x2+4n
= x2+x2015/n

x3+4+x2/n
be the integrand function. Clearly fn ≥ 0.

If x ≤ 2 and n ≥ 1, we can easily bound fn(x) ≤ 22016, and so 0 ≤
∫ 1+1/n
1 fn(x) dx ≤ 22016/n→ 0.

Thus we need to find the limit of
∫ 1
0 fn(x) dx.

Let f(x) = x2

x3+4
. For x ∈ [0, 1],

|fn(x)− f(x)| = |(x
3 + 4) · x2015/n− x4/n|

(x3 + 4 + x2/n)(x3 + 4)
≤ 6/n

16
≤ 1

n
.

This proves that the sequence of functions fn converges to f uniformly on [0, 1]. The limit therefore
equals

∫ 1
0 f(x) dx = 1

3(log 5− log 4).

7. True. Use the change of variables with g(x) = sinx, or directly the fundamental theorem of calculus
with F (x) =

∫ x
0 f . Then the integral equals F (sinπ)− F (sin 0) = 0.

8. (a) Since et
2−1 = t2 + t4/2+ . . ., with radius of convergence∞, we have F (x) = x3/3+x5/10+ . . .,

, with the same radius of convergence. Thus α = 0 and β = 1/3.

(b) We have et− 1 = t+ t2/2 + . . . and 1/(1− t) = 1 + t+ t2 + . . ., first with radius of convergence ∞
and second with radius of convergence 1. Hence, for |t| < 1,

et − 1

1− t
= t+

3

2
t2 + . . .

and so, for |x| < 1, F (x) = x2/2 + x3/2 + . . .. Therefore α = 1/2 and β = 1/2.

3


