Math 125B, Winter 2015.

Discussion problems 6

Note. These are problems on topology of \mathbb{R}^n .

1. Show that $[0,1] \times [0,1]$ includes a countable dense set S such that no two points of S lie on the same vertical line or on the same horizontal line.

2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined as follows:

$$f(x,y) = \begin{cases} \frac{|x|^{\alpha}|y|^{\beta}}{(x^2 + xy + y^2)(|x| + |y|)} & (x,y) \neq (0,0)\\ 0 & (x,y) = (0,0) \end{cases}$$

Show that f is indeed defined on the whole of \mathbb{R}^2 . Determine for which values of parameters $\alpha, \beta \geq 0$ is f continuous on \mathbb{R}^2 .

3. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be defined as follows:

$$f(x,y,z) = \begin{cases} \frac{xy|z|^{\alpha}}{|x|^{3-\alpha}+y^2+z^2} & (x,y,z) \neq (0,0,0) \\ 0 & (x,y,z) = (0,0,0) \end{cases}$$

Determine for which values of parameter $\alpha \in [0,3]$ is f continuous on \mathbb{R}^3 .

4. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. (a) Show that there exists a constant M so that $||T(x)|| \le M ||x||$. (b) Show that T is uniformly continuous.

5. Assume $f : \mathbb{R}^2 \to \mathbb{R}$. True or false: if $\lim_{r\to 0} f(ra, rb) = 0$ for every $a, b \in \mathbb{R}$ with $a^2 + b^2 = 1$, then $\lim_{(x,y)\to(0,0)} f(x,y) = 0$.

6. Assume $f : \mathbb{R}^n \to \mathbb{R}^2$, let f_1 and f_2 be its coordinate functions, and fix $a \in \mathbb{R}^n$. True or false: if $\lim_{x\to a} (f_1(x)^4 + |f_2(x)|) = 0$, then $\lim_{x\to a} f(x) = 0$.

Brief solutions

1. We construct $S_1 \subset S_2 \subset S_3 \subset \ldots$ by induction. We will denote by $X_k \subset [0,1]$ and $Y_k \subset [0,1]$ the sets of first and second coordinates of points in S_k .

Let S_1 consist of an arbitrary point in $[0,1] \times [0,1]$. For each $k \ge 1$, find a square L of the largest size which does not include a point in S_k (choosing arbitrarily if there is more than one such square of the largest size). Assume $L = [a, b] \times [c, d]$. As $X_k \cap [a, b]$ and $Y_k \cap [c, d]$ are finite, there exist rational numbers $p \in [a, b] \setminus X_k$ and $q \in [c, d] \setminus Y_k$. Then $(p, q) \in L$, but the horizontal and vertical lines through (p, q) include no point in S_k . Define $S_{k+1} = S_k \cup \{(p, q)\}$. In this fashion, the set $S = \bigcup_k S_k$ contains at least one point in every square.

Clearly S is countable. To show that S is dense, observe that for any $x \in [0,1] \times [0,1]$ there is a sequence of squares L_k , which include x and with sizes going to 0. Each of them includes a point $x_k \in L_k \cap S$. Thus $x_k \to x$.

2. To show that f is defined everywhere, observe that

$$x^{2} + xy + y^{2} = \frac{1}{2}(x+y)^{2} + \frac{1}{2}x^{2} + \frac{1}{2}y^{2}$$

and so $x^2 + xy + y^2 > 0$ unless x = y = 0. We only need to prove continuity at (0,0). Write (x,y) = r(a,b), where $a^2 + b^2 = 1$. Then $|a|, |b| \leq 1$ and one of |a|, |b| is at least $1/\sqrt{2} > 1/2$. Thus

$$f(x,y) = r^{\alpha+\beta-3} \frac{|a|^{\alpha}|b|^{\beta}}{(a^2+ab+b^2)(|a|+|b|)} \le r^{\alpha+\beta-3} \frac{1}{\frac{1}{4} \cdot \frac{1}{2}} = 8r^{\alpha+\beta-3}$$

This shows that f is continuous if $\alpha + \beta - 3 > 0$. If $\alpha + \beta - 3 = 0$, then f is a different constant on different straight lines through the origin, so f cannot be continuous. If $\alpha + \beta - 3 < 0$, and, say, $a = b = 1/\sqrt{2}$, then $f(x, y) \to \infty$ as $r \to 0$, so f again cannot be continuous. The answer is that f is continuous exactly when $\alpha + \beta > 3$.

3. Again, only continuity at the origin is an issue. Write x = r(a, b, c) where $a^2 + b^2 + c^2 = 1$. Then all |a|, |b|, |c| are at most 1, and one of them is at least $1/\sqrt{3} \ge 1/2$. Furthermore,

$$|f(x, y, z)| = r^{\alpha + 2} \frac{|a||b||c|^{\alpha}}{r^{3 - \alpha}|a|^{3 - \alpha} + r^{2}(b^{2} + c^{2})}$$

If $\alpha \in (0, 1]$, then $3 - \alpha \ge 2$ and so for $r \le 1$,

$$|f(x,y,z)| \le r^{\alpha} \frac{|a||b||c|^{\alpha}}{|a|^{3-\alpha} + b^2 + c^2} \le r^{\alpha} \frac{1}{2^{-3+\alpha}} \to 0$$

as $r \to 0$. If $\alpha = 0$ and (a, b, c) constant, with $a \neq 1$,

$$f(x, y, z) \to \frac{ab}{b^2 + c^2}$$

so that the limit of f as $(x, y, z) \to 0$ does not exist. If $\alpha \in [1, 3]$, then for $r \leq 1$,

$$|f(x, y, z)| \le r^{2\alpha - 1} \frac{|a||b||c|^{\alpha}}{|a|^{3 - \alpha} + b^2 + c^2} \le 4r \to 0.$$

The function is continuous unless $\alpha = 0$.

4. For (a), it suffices to show this for the norm $|| \cdot ||_{\infty}$ instead of the Euclidean one. Let T be given in the standard basis by the $m \times n$ matrix $[t_{ij}]$, and let $M = n \cdot \max_{i,j} |t_{ij}|$. Then

$$||T(x)||_{\infty} = \max_{i=1,\dots,m} |\sum_{j=1}^{n} t_{ij} x_j| \le \max_{i=1,\dots,m} \sum_{j=1}^{n} |t_{ij}| \cdot ||x||_{\infty} \le M ||x||_{\infty}.$$

(In fact, one can show that, for the Euclidean norm, the smallest M is the largest singular value of M, a.k.a. the largest eigenvalue of $M^T M$.) For (b), fix an $\epsilon > 0$ and let $\delta = \epsilon/M$. Assuming $||x_1 - x_2|| < \delta$, we get $||T(x_1) - T(x_2)|| = ||T(x_1 - x_2)|| \le M||x_1 - x_2|| < \epsilon$.

5. No. Let

$$f(x,y) = \begin{cases} 1 & y = x^2 \\ 0 & \text{otherwise} \end{cases}$$

Assume that (x, y) is on a straight line (x, y) = r(a, b), r > 0. If b = 0 (and thus $a \neq 0$), $x^2 - y = a^2 r^2 > 0$ for all r > 0. If b > 0, then $x^2 - y = r(ra^2 - b) < 0$ for $r < b/a^2$. If b < 0, then $x^2 - y \ge -br > 0$ for all r > 0. In all cases, f(ra, rb) = 0 for small enough r and thus $\lim_{r\to 0} f(ra, rb) = 0$. However, f clearly does not have a limit as $(x, y) \to 0$.

6. Yes. Under the assumption, $f_1(x) \to 0$ and $f_2(x) \to 0$ as $x \to a$, and then $f(x) \to 0$.