Discussion problems 6

Note. These are problems on topology of \mathbb{R}^n.

1. Show that $[0,1] \times [0,1]$ includes a countable dense set S such that no two points of S lie on the same vertical line or on the same horizontal line.

2. Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined as follows:

$$f(x, y) = \begin{cases} \frac{|x|^3 |y|^3}{(x^2 + xy + y^2)(|x| + |y|)} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

Show that f is indeed defined on the whole of \mathbb{R}^2. Determine for which values of parameters $\alpha, \beta \geq 0$ is f continuous on \mathbb{R}^2.

3. Let $f : \mathbb{R}^3 \to \mathbb{R}$ be defined as follows:

$$f(x, y, z) = \begin{cases} \frac{xy|z|^3}{|x| + |y| + z^2} & (x, y, z) \neq (0, 0, 0) \\ 0 & (x, y, z) = (0, 0, 0) \end{cases}$$

Determine for which values of parameter $\alpha \in [0, 3]$ is f continuous on \mathbb{R}^3.

4. Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear map. (a) Show that there exists a constant M so that $||T(x)|| \leq M||x||$.

(b) Show that T is uniformly continuous.

5. Assume $f : \mathbb{R}^2 \to \mathbb{R}$. True or false: if $\lim_{r \to 0} f(ra, rb) = 0$ for every $a, b \in \mathbb{R}$ with $a^2 + b^2 = 1$, then $\lim_{(x,y) \to (0,0)} f(x, y) = 0$.

6. Assume $f : \mathbb{R}^n \to \mathbb{R}^2$, let f_1 and f_2 be its coordinate functions, and fix $a \in \mathbb{R}^n$. True or false: if $\lim_{x \to a}(f_1(x)^4 + |f_2(x)|) = 0$, then $\lim_{x \to a} f(x) = 0$.

Brief solutions

1. We construct \(S_1 \subset S_2 \subset S_3 \subset \ldots \) by induction. We will denote by \(X_k \subset [0,1] \) and \(Y_k \subset [0,1] \) the sets of first and second coordinates of points in \(S_k \).

 Let \(S_1 \) consist of an arbitrary point in \([0,1] \times [0,1] \). For each \(k \geq 1 \), find a square \(L \) of the largest size which does not include a point in \(S_k \) (choosing arbitrarily if there is more than one such square of the largest size). Assume \(L = [a, b] \times [c, d] \). As \(X_k \cap [a, b] \) and \(Y_k \cap [c, d] \) are finite, there exist rational numbers \(p \in [a, b] \setminus X_k \) and \(q \in [c, d] \setminus Y_k \). Then \((p, q) \in L \), but the horizontal and vertical lines through \((p, q)\) include no point in \(S_k \). Define \(S_{k+1} = S_k \cup \{(p, q)\} \). In this fashion, the set \(S = \cup_k S_k \) contains at least one point in every square.

 Clearly \(S \) is countable. To show that \(S \) is dense, observe that for any \(x \in [0,1] \times [0,1] \) there is a sequence of squares \(L_k \), which include \(x \) and with sizes going to 0. Each of them includes a point \(x_k \in L_k \cap S \). Thus \(x_k \to x \).

2. To show that \(f \) is defined everywhere, observe that

 \[
 x^2 + xy + y^2 = \frac{1}{2}(x+y)^2 + \frac{1}{2}x^2 + \frac{1}{2}y^2,
 \]

 and so \(x^2 + xy + y^2 > 0 \) unless \(x = y = 0 \). We only need to prove continuity at \((0,0)\). Write \((x,y) = r(a,b)\), where \(a^2 + b^2 = 1 \). Then \(|a|, |b| \leq 1 \) and one of \(|a|, |b| \) is at least \(1/\sqrt{2} > 1/2 \). Thus

 \[
 f(x,y) = r^{\alpha + \beta - 3} \frac{|a| |b|^\beta}{(a^2 + ab + b^2)(|a| + |b|)} \leq r^{\alpha + \beta - 3} \frac{1}{\frac{1}{4} \cdot \frac{1}{2}} = 8r^{\alpha + \beta - 3}.
 \]

 This shows that \(f \) is continuous if \(\alpha + \beta - 3 > 0 \). If \(\alpha + \beta - 3 = 0 \), then \(f \) is a different constant on different straight lines through the origin, so \(f \) cannot be continuous. If \(\alpha + \beta - 3 < 0 \), and, say, \(a = b = 1/\sqrt{2} \), then \(f(x,y) \to \infty \) as \(r \to 0 \), so \(f \) again cannot be continuous. The answer is that \(f \) is continuous exactly when \(\alpha + \beta > 3 \).

3. Again, only continuity at the origin is an issue. Write \(x = r(a,b,c) \) where \(a^2 + b^2 + c^2 = 1 \). Then all \(|a|, |b|, |c| \) are at most 1, and one of them is at least \(1/\sqrt{3} \geq 1/2 \). Furthermore,

 \[
 |f(x,y,z)| = r^{\alpha + 2} \frac{|a||b||c|^\alpha}{r^{3-\alpha} |a|^{3-\alpha} + r^2(b^2 + c^2)}
 \]

 If \(\alpha \in (0,1] \), then \(3 - \alpha \geq 2 \) and so for \(r \leq 1 \),

 \[
 |f(x,y,z)| \leq r^\alpha \frac{|a||b||c|^\alpha}{|a|^{3-\alpha} + b^2 + c^2} \leq r^\alpha \frac{1}{2^{-3+\alpha}} \to 0
 \]

 as \(r \to 0 \). If \(\alpha = 0 \) and \((a,b,c)\) constant, with \(a \neq 1 \),

 \[
 f(x,y,z) \to \frac{ab}{b^2 + c^2}
 \]

 so that the limit of \(f \) as \((x,y,z) \to 0\) does not exist. If \(\alpha \in [1,3) \), then for \(r \leq 1 \),

 \[
 |f(x,y,z)| \leq r^{2\alpha - 1} \frac{|a||b||c|^\alpha}{|a|^{3-\alpha} + b^2 + c^2} \leq 4r \to 0.
 \]

 The function is continuous unless \(\alpha = 0 \).
4. For (a), it suffices to show this for the norm $|| \cdot ||_\infty$ instead of the Euclidean one. Let T be given in the standard basis by the $m \times n$ matrix $[t_{ij}]$, and let $M = n \cdot \max_{i,j} |t_{ij}|$. Then

$$||T(x)||_\infty = \max_{i=1,...,m} \left| \sum_{j=1}^{n} t_{ij} x_j \right| \leq \max_{i=1,...,m} \sum_{j=1}^{n} |t_{ij}| \cdot ||x||_\infty \leq M ||x||_\infty.$$

(In fact, one can show that, for the Euclidean norm, the smallest M is the largest singular value of M, a.k.a. the largest eigenvalue of $M^T M$.) For (b), fix an $\epsilon > 0$ and let $\delta = \epsilon / M$. Assuming $||x_1 - x_2|| < \delta$, we get $||T(x_1) - T(x_2)|| = ||T(x_1 - x_2)|| \leq M ||x_1 - x_2|| < \epsilon$.

5. No. Let

$$f(x, y) = \begin{cases} 1 & y = x^2 \\ 0 & \text{otherwise} \end{cases}$$

Assume that (x, y) is on a straight line $(x, y) = r(a, b), r > 0$. If $b = 0$ (and thus $a \neq 0$), $x^2 - y = a^2 r^2 > 0$ for all $r > 0$. If $b > 0$, then $x^2 - y = r(a^2 - b) < 0$ for $r < b/a^2$. If $b < 0$, then $x^2 - y \geq -br > 0$ for all $r > 0$. In all cases, $f(ra, rb) = 0$ for small enough r and thus $\lim_{r \to 0} f(ra, rb) = 0$. However, f clearly does not have a limit as $(x, y) \to 0$.

6. Yes. Under the assumption, $f_1(x) \to 0$ and $f_2(x) \to 0$ as $x \to a$, and then $f(x) \to 0$.