Math 125B, Winter 2015.

Discussion problems 8

Note. These are problems on differentiable functions.

1. Assume $f : \mathbb{R}^2 \to \mathbb{R}$ is a function. For each statement below determine, with proof, whether it is true or false.

(a) If $f \in \mathcal{C}^1(\mathbb{R}^2)$, then f is differentiable on \mathbb{R}^2 .

(b) If f is differentiable on \mathbb{R}^2 , then $f \in \mathcal{C}^1(\mathbb{R}^2)$.

(c) If f is differentiable on \mathbb{R}^2 , and $T : \mathbb{R}^2 \to \mathbb{R}^2$ is linear, then the function $g : \mathbb{R}^2 \to \mathbb{R}^2$, given by $g(x) = (\sqrt{f(x)^2 + 1}, f(Tx))$ is differentiable.

(d) If $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ both exist and are continuous on \mathbb{R}^2 , and $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$, then the directional derivative $D_u f(0,0) = 0$ for every $u \neq (0,0)$, .

- 2. Let $f : \mathbb{R}^3 \to \mathbb{R}^3$ be given by $f(x_1, x_2, x_3) = (x_1 e^{x_2 + 2x_3}, 2x_2 \cos(x_1 x_3), x_3 e^{4x_1 + 3x_2}).$
- (a) Compute Df(0, 0, 0).
- (b) Compute $D(f \circ f)(0, 0, 0)$. (After solving (a), ten seconds, no computer.)

(c) Is $\frac{\partial^2}{\partial x \partial y} f(0,0) = \frac{\partial^2}{\partial y \partial x} f(0,0)$? (Ten seconds, no computer)

3. Discuss differentiability of $f : \mathbb{R}^2 \to \mathbb{R}$ defined as follows:

$$f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

(*Remark.* You are encouraged to use the computer for the tedious computing of partial derivatives. If the problem were on an exam, it would include something like the following: "You may assume that $f_x = \frac{x(x^3+3xy^2+2y^3)}{(x^2+y^2)^2}$ wherever applicable. Show that f(x,y) = -f(y,x) implies that $f_y(x,y) = -f_x(y,x)$.")

4. Discuss differentiability, in dependence of the parameter $\alpha \in \mathbb{R}$, of $f : \mathbb{R}^3 \to \mathbb{R}$ defined as follows:

$$f(x, y, z) = \begin{cases} \frac{xyz}{(x^2 + y^2 + z^2)^{\alpha}} & (x, y, z) \neq (0, 0, 0) \\ 0 & (x, y, z) = (0, 0, 0) \end{cases}$$

Brief solutions

1. (a) Yes. This follows from a theorem proved in class.

(b) No. We gave a counterexample in the lecture.

(c) Yes. Both coordinate functions of g are differentiable because of the chain rule. The first coordinate function $g_1 : \mathbb{R}^2 \to \mathbb{R}$ is given by $g_1 = h \circ f$, where $h : \mathbb{R} \to \mathbb{R}$ is the function $h(x) = \sqrt{x^2 + 1}$ and is differentiable on \mathbb{R} . The second coordinate function $g_2 : \mathbb{R}^2 \to \mathbb{R}$ is given by $g_2 = f \circ T$, where $T : \mathbb{R}^2 \to \mathbb{R}^2$ is linear and therefore differentiable.

(d) Yes. Under the assumption, Df(0,0) exists and equals $T = \begin{bmatrix} 0 & 0 \end{bmatrix}$. Then $D_u(f)(0,0) = Tu = 0$.

2. (a) By computing partial derivatives

$$Df(0,0,0) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

(b) By the chain rule, the answer is the square of the matrix in (a), that is

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(c) Yes, this function is in $\mathcal{C}^{\infty}(\mathbb{R}^2)$, so the two mixed derivatives are equal.

3. Clearly, $f \in \mathcal{C}^{\infty}(\mathbb{R}^2 \setminus \{(0,0)\})$ and so f is differentiable on $\mathbb{R}^2 \setminus \{(0,0)\}$. Also, it is easy to check by polar representation that $f \in \mathcal{C}(\mathbb{R}^2)$. Moreover, f(x,0) = x whenever $x \neq 0$, so

$$f_x(x,y) = \begin{cases} \frac{x(x^3+3xy^2+2y^3)}{(x^2+y^2)^2} & (x,y) \neq (0,0)\\ 1 & (x,y) = (0,0) \end{cases}$$

As $f_x(0,y) = 0$ for every $y \neq 0$, f_x is clearly not continuous, so we need to check differentiability directly.

We have f(0, y) = -y whenever $y \neq 0$, so $f_y(0, 0) = -1$. Thus, the only candidate for Df(0, 0) is $\begin{bmatrix} 1 & -1 \end{bmatrix}$, and we need to check whether

$$0 = \lim_{(x,y)\to(0,0)} \frac{f(x,y) - x + y}{\sqrt{x^2 + y^2}} = \lim_{(x,y)\to(0,0)} \frac{yx^2 - xy^2}{(x^2 + y^2)^{3/2}}.$$

If (x, y) = r(a, b), with $a^2 + b^2 = 1$, then the above expression is $ba^2 - ab^2$ and so the limit does not exist. Therefore f is not differentiable at (0, 0).

4. It is easy to check by polar representation that f is continuous exactly when $\alpha < 3/2$. Moreover, for all α ,

$$f_x(x,y,z) = \begin{cases} \frac{yz(x^2 - 2\alpha(x^2 + y^2 + z^2))}{(x^2 + y^2 + z^2)^{\alpha + 1}} & (x,y,z) \neq (0,0,0) \\ 0 & (x,y,z) = (0,0,0) \end{cases}$$

Writing (x, y, z) = r(a, b, c), with $a^2 + b^2 + c^2 = 1$, we see that the above expression is $r^{2-2\alpha}$ times a bounded quantity, so that $f_x \in \mathcal{C}(\mathbb{R}^3)$ when $\alpha < 1$. By symmetry, it is also true that $f_y, f_z \in \mathcal{C}(\mathbb{R}^3)$

when $\alpha < 1$, so $f \in \mathcal{C}^1(\mathbb{R}^3)$ and consequently f is differentiable on \mathbb{R}^3 in this case. In general, the only candidate for Df(0,0,0) is $\begin{bmatrix} 0 & 0 \end{bmatrix}$, and for differentiability at the origin we need to check whether

$$0 = \lim_{(x,y,z)\to(0,0,0)} \frac{f(x,y,z)}{\sqrt{x^2 + y^2 + z^2}} = \lim_{(x,y,z)\to(0,0,0)} \frac{xyz}{(x^2 + y^2 + z^2)^{\alpha + 1/2}}.$$

In polar representation, the above expression becomes $r^{2-2\alpha}abc$ and so the limit does not exist when $\alpha \geq 1$. Thus f is differentiable exactly when $\alpha < 1$.