EXERCISES

5.2.0. Suppose that \(a < b \). Decide which of the following statements are true and which are false. Prove the true ones and give counterexamples for the false ones.

a) If \(f \) and \(g \) are Riemann integrable on \([a, b]\), then \(f - g \) is Riemann integrable on \([a, b]\).

b) If \(f \) is Riemann integrable on \([a, b]\) and \(P \) is any polynomial on \(\mathbb{R} \), then \(P \circ f \) is Riemann integrable on \([a, b]\).

c) If \(f \) and \(g \) are nonnegative real functions on \([a, b]\), with \(f \) continuous and \(g \) Riemann integrable on \([a, b]\), then there exist \(x_0, x_1 \in [a, b] \) such that

\[
\int_a^b f(x)g(x) \, dx = f(x_0) \int_{x_1}^b g(x) \, dx.
\]

d) If \(f \) and \(g \) are Riemann integrable on \([a, b]\) and \(f \) is continuous, then there is an \(x_0 \in [a, b] \) such that

\[
\int_a^b f(x)g(x) \, dx = f(x_0) \int_a^b g(x) \, dx.
\]

5.2.1. Using the connection between integrals and area, evaluate each of the following integrals.

a) \[
\int_{-2}^2 |x + 1| \, dx
\]

b) \[
\int_{-2}^2 (|x + 1| + |x|) \, dx
\]

c) \[
\int_{-a}^a \sqrt{a^2 - x^2} \, dx, \quad a > 0
\]

d) \[
\int_0^a (5 + \sqrt{2x + x^2}) \, dx
\]

5.2.2. a) Suppose that \(a < b \) and \(n \in \mathbb{N} \) is even. If \(f \) is continuous on \([a, b]\) and \(\int_a^b f(x)x^n \, dx = 0 \), prove that \(f(x) = 0 \) for at least one \(x \in [a, b] \).

b) Show that part a) might not be true if \(n \) is odd.

c) Prove that part a) does hold for odd \(n \) when \(a \geq 0 \).

5.2.3. Use Taylor polynomials with three or four nonzero terms to verify the following inequalities.

a) \[
0.3095 < \int_0^1 \sin(x^2) \, dx < 0.3103
\]

(The value of this integral is approximately 0.3102683.)
b) \[1.4571 < \int_0^1 e^{x^2} \, dx < 1.5704 \]

(The value of this integral is approximately 1.4626517.)

5.2.4. Suppose that \(f : [0, \infty) \to [0, \infty) \) is integrable on every closed interval \([a, b] \subset [0, \infty)\). If

\[F(x) := \int_0^x e^{-y^2} f(y) \, dy, \quad x \in [0, \infty), \]

then there is a function \(g : [0, \infty) \to [0, \infty) \) such that \(F(x) = \int_{g(x)}^x f(y) \, dy \) for all \(x \in [0, \infty) \).

5.2.5. Prove that if \(f \) is integrable on \([0, 1]\) and \(\beta > 0 \), then

\[\lim_{n \to \infty} n^\alpha \int_0^{1/n^\beta} f(x) \, dx = 0 \]

for all \(\alpha < \beta \).

5.2.6. a) Suppose that \(g_n \geq 0 \) is a sequence of integrable functions which satisfies

\[\lim_{n \to \infty} \int_a^b g_n(x) \, dx = 0. \]

Show that if \(f : [a, b] \to \mathbb{R} \) is integrable on \([a, b]\), then

\[\lim_{n \to \infty} \int_a^b f(x) g_n(x) \, dx = 0. \]

b) Prove that if \(f \) is integrable on \([0, 1]\), then

\[\lim_{n \to \infty} \int_0^1 x^n f(x) \, dx = 0. \]

5.2.7. Suppose that \(f \) is integrable on \([a, b]\), that \(x_0 = a \), and that \(x_n \) is a sequence of numbers in \([a, b]\) such that \(x_n \uparrow b \) as \(n \to \infty \). Prove that

\[\int_a^b f(x) \, dx = \lim_{n \to \infty} \sum_{k=0}^n \int_{x_k}^{x_{k+1}} f(x) \, dx. \]

5.2.8. Let \(f \) be continuous on a closed, nondegenerate interval \([a, b]\) and set

\[M = \sup_{x \in [a, b]} |f(x)|. \]
a) Prove that if $M > 0$ and $p > 0$, then for every $\varepsilon > 0$ there is a nondegenerate interval $I \subset [a, b]$ such that

\[(M - \varepsilon)^p |I| \leq \int_a^b |f(x)|^p \, dx \leq M^p (b - a). \]

b) Prove that

\[\lim_{p \to \infty} \left(\int_a^b |f(x)|^p \, dx \right)^{1/p} = M. \]

5.2.9. Let $f : [a, b] \to \mathbb{R}$, $a = x_0 < x_1 < \cdots < x_n = b$, and suppose that $f(x_k^+) \text{ exists and is finite for } k = 0, 1, \ldots, n - 1$ and $f(x_k^-) \text{ exists and is finite for } k = 1, \ldots, n$. Show that if f is continuous on each subinterval (x_{k-1}, x_k), then f is integrable on $[a, b]$ and

\[\int_a^b f(x) \, dx = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \, dx. \]

5.2.10. Prove that if f and g are integrable on $[a, b]$, then so are $f \vee g$ and $f \wedge g$ (see Exercise 3.1.8).

5.2.11. Suppose that $f : [a, b] \to \mathbb{R}$.

a) If f is not bounded above on $[a, b]$, then given any partition P of $[a, b]$ and $M > 0$, there exist $t_j \in [x_{j-1}, x_j]$ such that $S(f, P, t_j) > M$.

b) If the Riemann sums of f converge to a finite number $I(f)$, as $\|P\| \to 0$, then f is bounded on $[a, b]$.

5.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Let f be integrable on $[a, b]$ and $F(x) = \int_a^x f(t) \, dt$. By Theorem 5.26, F is continuous on $[a, b]$. The next result shows that if f is continuous, then F is continuously differentiable. Thus "indefinite integration" improves the behavior of the function.

5.28 Theorem. [FUNDAMENTAL THEOREM OF CALCULUS].

Let $[a, b]$ be nondegenerate and suppose that $f : [a, b] \to \mathbb{R}$.

i) If f is continuous on $[a, b]$ and $F(x) = \int_a^x f(t) \, dt$, then $F \in C^1[a, b]$ and

\[\frac{d}{dx} \int_a^x f(t) \, dt := F'(x) = f(x) \]

for each $x \in [a, b]$.

ii) If f is differentiable on $[a, b]$ and f' is integrable on $[a, b]$, then

\[\int_a^x f'(t) \, dt = f(x) - f(a) \]

for each $x \in [a, b]$.