EXERCISES

- **5.2.0.** Suppose that a < b. Decide which of the following statements are true and which are false. Prove the true ones and give counterexamples for the false ones.
 - a) If f and g are Riemann integrable on [a, b], then f g is Riemann integrable on [a, b].

5.2.4

5.2.5

5.2.6

5.2.7.

5.2.8.

- b) If f is Riemann integrable on [a, b] and P is any polynomial on \mathbb{R} , then $P \circ f$ is Riemann integrable on [a, b].
- c) If f and g are nonnegative real functions on [a, b], with f continuous and g Riemann integrable on [a, b], then there exist $x_0, x_1 \in [a, b]$ such that

$$\int_{a}^{b} f(x)g(x) \ dx = f(x_0) \int_{x_1}^{b} g(x) \ dx.$$

d) If f and g are Riemann integrable on [a, b] and f is continuous, then there is an $x_0 \in [a, b]$ such that

$$\int_{a}^{b} f(x)g(x) \, dx = f(x_0) \int_{a}^{b} g(x) \, dx.$$

5.2.1. Using the connection between integrals and area, evaluate each of the following integrals.

$$\int_{-2}^{2} |x+1| \, dx$$

b)
$$\int_{-2}^{2} (|x+1| + |x|) \, dx$$

c)
$$\int_{-a}^{a} \sqrt{a^2 - x^2} \, dx, \qquad a > 0$$

d)
$$\int_0^2 (5 + \sqrt{2x + x^2}) \, dx$$

- **5.2.2.** a) Suppose that a < b and $n \in \mathbb{N}$ is even. If f is continuous on [a, b] and $\int_a^b f(x) x^n dx = 0$, prove that f(x) = 0 for at least one $x \in [a, b]$.
 - b) Show that part a) might not be true if n is odd.
 - c) Prove that part a) does hold for odd n when $a \ge 0$.
- **5.2.3.** Use Taylor polynomials with three or four nonzero terms to verify the following inequalities.

a)
$$0.3095 < \int_0^1 \sin(x^2) \, dx < 0.3103$$

(The value of this integral is approximately 0.3102683.)

and

the

b)
$$1.4571 < \int_0^1 e^{x^2} dx < 1.5704$$

(The value of this integral is approximately 1.4626517.)

5.2.4. Suppose that $f:[0,\infty)\to [0,\infty)$ is integrable on every closed interval $[a,b]\subset [0,\infty)$. If

$$F(x) := \int_0^x e^{-y^2} f(y) \, dy, \quad x \in [0, \infty),$$

then there is a function $g:[0,\infty)\to [0,\infty)$ such that $F(x)=\int_{g(x)}^x f(y)\,dy$ for all $x\in[0,\infty)$.

5.2.5. Prove that if f is integrable on [0, 1] and $\beta > 0$, then

$$\lim_{n \to \infty} n^{\alpha} \int_0^{1/n^{\beta}} f(x) \, dx = 0$$

for all $\alpha < \beta$.

5.2.6. a) Suppose that $g_n \ge 0$ is a sequence of integrable functions which satisfies

$$\lim_{n\to\infty} \int_a^b g_n(x) \ dx = 0.$$

Show that if $f:[a,b] \to \mathbf{R}$ is integrable on [a,b], then

$$\lim_{n\to\infty} \int_a^b f(x)g_n(x)\ dx = 0.$$

b) Prove that if f is integrable on [0, 1], then

$$\lim_{n \to \infty} \int_0^1 x^n f(x) \, dx = 0.$$

5.2.7. Suppose that f is integrable on [a, b], that $x_0 = a$, and that x_n is a sequence of numbers in [a, b] such that $x_n \uparrow b$ as $n \to \infty$. Prove that

$$\int_{a}^{b} f(x) \, dx = \lim_{n \to \infty} \sum_{k=0}^{n} \int_{x_{k}}^{x_{k+1}} f(x) \, dx.$$

5.2.8. Let f be continuous on a closed, nondegenerate interval [a, b] and set

$$M = \sup_{x \in [a,b]} |f(x)|$$

a) Prove that if M > 0 and p > 0, then for every $\varepsilon > 0$ there is a nondegenerate interval $I \subset [a, b]$ such that

$$(M-\varepsilon)^p|I| \le \int_a^b |f(x)|^p dx \le M^p(b-a).$$

b) Prove that

$$\lim_{p \to \infty} \left(\int_a^b |f(x)|^p \ dx \right)^{1/p} = M.$$

5.2.9. Let $f: [a,b] \to \mathbb{R}$, $a = x_0 < x_1 < \cdots < x_n = b$, and suppose that $f(x_k+)$ exists and is finite for $k = 0, 1, \ldots, n-1$ and $f(x_k-)$ exists and is finite for k = 1, ..., n. Show that if f is continuous on each subinterval (x_{k-1}, x_k) , then f is integrable on [a, b] and

$$\int_{a}^{b} f(x) \ dx = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} f(x) \ dx.$$

5.2.10. Prove that if f and g are integrable on [a, b], then so are $f \vee g$ and $f \wedge g$ (see Exercise 3.1.8).

5.2.11. Suppose that $f:[a,b] \to \mathbb{R}$.

- a) If f is not bounded above on [a, b], then given any partition P of [a, b] and M > 0, there exist $t_j \in [x_{j-1}, x_j]$ such that $S(f, P, t_j) > M$.
- b) If the Riemann sums of f converge to a finite number I(f), as ||P|| \rightarrow 0, then f is bounded on [a, b].

5.3 THE FUNDAMENTAL THEOREM OF CALCULUS

Let f be integrable on [a, b] and $F(x) = \int_a^x f(t) dt$. By Theorem 5.26, F is continuous on [a, b]. The next result shows that if f is continuous, then F is continuously differentiable. Thus "indefinite integration" improves the behavior of the function.

5.28 Theorem. [FUNDAMENTAL THEOREM OF CALCULUS].

Let [a,b] be nondegenerate and suppose that $f:[a,b] \to \mathbf{R}$.

i) If f is continuous on [a, b] and $F(x) = \int_a^x f(t) dt$, then $F \in C^1[a, b]$ and

$$\frac{d}{dx} \int_a^x f(t) dt := F'(x) = f(x)$$

for each $x \in [a, b]$.

ii) If f is differentiable on [a, b] and f' is integrable on [a, b], then

$$\int_{a}^{x} f'(t) dt = f(x) - f(a)$$

for each $x \in [a, b]$.