EXERCISES

- **5.3.0.** Suppose that a < b. Decide which of the following statements are true and which are false. Prove the true ones and give counterexamples for the false ones.
 - a) If f is continuous and nonnegative on [a, b] and $g : [a, b] \rightarrow [a, b]$ is differentiable and increasing on [a, b], then

$$F(x) := \int_{a}^{g(x)} f(t) dt$$

is increasing on [a, b].

b) If f and g are differentiable on [a, b], if f' and g' are Riemann integrable on [a, b], and if f(a) = 0 but g is never zero on [a, b], then

$$f(x) = \int_a^x g(t) \left(\frac{f(t)}{g(t)}\right)' dt + \int_a^x \frac{f(t)g'(t)}{g(t)} dt$$

for all $x \in [a, b]$.

c) If f and g are differentiable on [a, b], and if f' and g' are Riemann integrable on [a, b], then

$$\int_{a}^{b} f'(x)g(x) \, dx + \int_{a}^{b} f(x)g'(x) \, dx = 0$$

if and only if f(a)g(a) = f(b)g(b).

d) If f and g are continuously differentiable on [a, b], and if h is continuous on [a, b], then

$$\int_{g(f(a))}^{g(f(b))} h(x) \, dx = \int_{a}^{b} h(g(f(x)))g'(f(x))f'(x) \, dx.$$

5.3.1. If $f: \mathbf{R} \to \mathbf{R}$ is continuous, find F'(x) for each of the following functions.

a)
$$F(x) = \int_{x^2}^1 f(t) dt$$

$$F(x) = \int_{x^2}^{x^3} f(t) dt$$

c)
$$F(x) = \int_0^{x \cos x} t f(t) dt$$

d)
$$F(x) = \int_0^x f(t - x) dt$$

s are true mples for

$$\rightarrow [a, b]$$
 is

х.

wing func-

5.3.2. Suppose that f is nonnegative and continuous on [1, 2] and that $\int_{1}^{2} x^{k} f(x) dx = 5 + k^{2}$ for k = 0, 1, 2. Prove that each of the following statements is correct.

a)
$$\int_{1}^{4} f(\sqrt{x}) dx = 12$$

$$\int_{\sqrt{2}/2}^{1} f\left(\frac{1}{x^2}\right) dx \le \frac{5}{2}$$

c)
$$\int_0^1 x^2 f(x+1) \, dx = 2$$

5.3.3. Suppose that f is integrable on [0.5, 2] and that

$$\int_{0.5}^{1} x^k f(x) \, dx = \int_{1}^{2} x^k f(x) \, dx + 2k^2 = 3 + k^2$$

for k = 0, 1, 2. Compute the exact values of each of the following integrals.

a)
$$\int_0^1 x^3 f(x^2 + 1) \, dx$$

b)
$$\int_0^{\sqrt{3}/2} \frac{x^3}{\sqrt{1-x^2}} f\left(\sqrt{1-x^2}\right) dx$$

5.3.4. Suppose that f and g are differentiable on [0, e] and that f' and g' are integrable on [0, e].

a) If $\int_1^e f(x)/x \, dx < f(e)$, prove that

$$\int_1^e f'(x) \log x \ dx > 0.$$

b) If f(0) = f(1) = 0, prove that

$$\int_0^1 e^x (f(x) + f'(x)) \, dx = 0.$$

c) If $0 \in \{f(0), g(0)\} \cap \{f(e), g(e)\}$, prove that

$$\int_0^e f(x)g'(x) \, dx = -\int_0^e g(x)f'(x) \, dx.$$

5.3.5. Use the First Mean Value Theorem for Integrals to prove the following version of the Mean Value Theorem for Derivatives. If $f \in C^1[a, b]$, then there is an $x_0 \in [a, b]$ such that

$$f(b) - f(a) = (b - a)f'(x_0).$$

5.3.6. If f is continuous on [a, b] and there exist numbers $\alpha \neq \beta$ such that

$$\alpha \int_{a}^{c} f(x) dx + \beta \int_{c}^{b} f(x) dx = 0$$

holds for all $c \in (a, b)$, prove that f(x) = 0 for all $x \in [a, b]$.

5.3.7 . This exercise is used in Sections 5.4 and 6.1. Define $L:(0,\infty)\to \mathbb{R}$ by

$$L(x) = \int_1^x \frac{dt}{t}.$$

- a) Prove that L is differentiable and strictly increasing on $(0, \infty)$, with L'(x) = 1/x and L(1) = 0.
- b) Prove that $L(x) \to \infty$ as $x \to \infty$ and $L(x) \to -\infty$ as $x \to 0+$. (You may wish to prove

$$L(2^n) = \sum_{k=1}^n \int_{2^{k-1}}^{2^k} \frac{dt}{t} > \sum_{k=1}^n 2^{-k} \left(2^k - 2^{k-1} \right) = \frac{n}{2}$$

5.4 IMPR

for all $n \in \mathbb{N}$.)

- c) Using the fact that $(x^q)' = qx^{q-1}$ for x > 0 and $q \in \mathbb{Q}$ (see Exercise 4.2.7), prove that $L(x^q) = qL(x)$ for all $q \in \mathbb{Q}$ and x > 0.
- d) Prove that L(xy) = L(x) + L(y) for all $x, y \in (0, \infty)$.
- e) Suppose that $e = \lim_{n\to\infty} (1 + 1/n)^n$ exists. (It does—see Example 4.22.) Use l'Hôpital's Rule to show that L(e) = 1. [L(x) is the natural logarithm function $\log x$.
- **5.3.8**]. This exercise was used in Section 4.3. Let $E = L^{-1}$ represent the inverse function of L, where L is defined in Exercise 5.3.7.
 - a) Use the Inverse Function Theorem to show that E is differentiable and strictly increasing on **R** with E'(x) = E(x), E(0) = 1, and E(1) = e.
 - b) Prove that $E(x) \to \infty$ as $x \to \infty$ and $E(x) \to 0$ as $x \to -\infty$.
 - c) Prove that $E(xq) = (E(x))^q$ and $E(q) = e^q$ for all $q \in \mathbf{Q}$ and $x \in \mathbf{R}$.
 - d) Prove that E(x + y) = E(x)E(y) for all $x, y \in \mathbb{R}$.
 - e) For each $\alpha \in \mathbf{R}$ define $e^{\alpha} = E(\alpha)$. Let x > 0 and define $x^{\alpha} =$ $e^{\alpha \log x} := E(\alpha L(x))$. Prove that 0 < x < y implies $x^{\alpha} < y^{\alpha}$ for $\alpha > 0$ and $x^{\alpha} > y^{\alpha}$ for $\alpha < 0$. Also prove that

$$x^{\alpha+\beta} = x^{\alpha}x^{\beta}$$
, $x^{-\alpha} = \frac{1}{x^{\alpha}}$, and $(x^{\alpha})' = \alpha x^{\alpha-1}$

for all α , $\beta \in \mathbf{R}$ and x > 0.

llowing $^{1}[a,b],$

hat

→ R by

 ∞), with +. (You

ee Exer-

e Exam-(x) is the

e inverse

rentiable E(1)=e.

 $dx \in \mathbf{R}$.

ine $x^{\alpha} =$ for $\alpha > 0$

5.3.9. Suppose that $f:[a,b] \to \mathbf{R}$ is continuously differentiable and 1-1 on [a, b]. Prove that

$$\int_{a}^{b} f(x) dx + \int_{f(a)}^{f(b)} f^{-1}(x) dx = bf(b) - af(a).$$

- **5.3.10.** Suppose that ϕ is \mathcal{C}^1 on [a, b] and f is integrable on $[c, d] := \phi[a, b]$. If ϕ' is never zero on [a, b], prove that $f \circ \phi$ is integrable on [a, b].
- **5.3.11.** Let $q \in \mathbb{Q}$. Suppose that a < b, 0 < c < d, and that $f : [a, b] \rightarrow$ [c, d]. If f is integrable on [a, b], then prove that f^q is integrable on [a, b].
- **5.3.12.** For each $n \in \mathbb{N}$, define

$$a_n := \left(\frac{(2n)!}{n!n^n}\right)^{1/n}.$$

Prove that $a_n \to 4/e$.

IMPROPER RIEMANN INTEGRATION

To extend the Riemann integral to unbounded intervals or unbounded functions, we begin with an elementary observation.

5.37 Remark. If f is integrable on [a, b], then

$$\int_{a}^{b} f(x) dx = \lim_{c \to a+} \left(\lim_{d \to b-} \int_{c}^{d} f(x) dx \right).$$

Proof. By Theorem 5.26,

$$F(x) = \int_{a}^{x} f(t) dt$$

is continuous on [a, b]. Thus

$$\int_{a}^{b} f(x) dx = F(b) - F(a) = \lim_{c \to a+} (\lim_{d \to b-} (F(d) - F(c)))$$
$$= \lim_{c \to a+} \left(\lim_{d \to b-} \int_{c}^{d} f(x) dx \right).$$

This leads to the following generalization of the Riemann integral.