To show that $\sin x/x$ is not absolutely integrable on $[1, \infty)$, notice that

$$\int_{1}^{n\pi} \frac{|\sin x|}{x} dx \ge \sum_{k=2}^{n} \int_{(k-1)\pi}^{k\pi} \frac{|\sin x|}{x} dx$$

$$\ge \sum_{k=2}^{n} \frac{1}{k\pi} \int_{(k-1)\pi}^{k\pi} |\sin x| dx$$

$$= \sum_{k=2}^{n} \frac{2}{k\pi} = \frac{2}{\pi} \sum_{k=2}^{n} \frac{1}{k}$$

for each $n \in \mathbb{N}$ $n \ge 2$. Since

$$\sum_{k=2}^{n} \frac{1}{k} \ge \sum_{k=2}^{n} \int_{k}^{k+1} \frac{1}{x} dx = \int_{2}^{n+1} \frac{1}{x} dx = \log(n+1) - \log 2 \to \infty$$

as $n \to \infty$, it follows from the Squeeze Theorem that

$$\lim_{n \to \infty} \int_{1}^{n\pi} \frac{|\sin x|}{x} \, dx = \infty.$$

Thus, $\sin x/x$ is not absolutely integrable on $[1, \infty)$.

EXERCISES

- **5.4.0.** Suppose that a < b. Decide which of the following statements are true and which are false. Prove the true ones and give counterexamples for the false ones.
 - a) If f is bounded on [a, b], if g is absolutely integrable on (a, b), and if $|f(x)| \le g(x)$ for all $x \in (a, b)$, then f is absolutely integrable on (a, b).
 - b) Suppose that h is absolutely integrable on (a, b). If f is continuous on (a, b), if g is continuous and never zero on [a, b], and if $|f(x)| \le h(x)$ for all $x \in [a, b]$, then f/g is absolutely integrable on (a, b).
 - c) If $f:(a,b)\to [0,\infty)$ is continuous and absolutely integrable on (a,b) for some $a,b\in \mathbb{R}$, then \sqrt{f} is absolutely integrable on (a,b).
 - d) If f and g are absolutely integrable on (a, b), then $\max\{f, g\}$ and $\min\{f, g\}$ are both absolutely integrable on (a, b).
- 5.4.1. Evaluate the following improper integrals.

$$\int_{1}^{\infty} \frac{1+x}{x^3} \, dx$$

$$\int_{-\infty}^{0} x^2 e^{x^3} dx$$

$$-\log 2 \to \infty$$

statements are true counterexamples for

grable on (a, b), and olutely integrable on

If f is continuous on and if $|f(x)| \le h(x)$ e on (a, b). lutely integrable on itegrable on (a, b).

then $\max\{f,g\}$ and

$$\int_0^{\pi/2} \frac{\cos x}{\sqrt[3]{\sin x}} \, dx$$

$$\int_0^1 \log x \ dx$$

- **5.4.2.** For each of the following, find all values of $p \in \mathbf{R}$ for which f is improperly integrable on I.
 - a) $f(x) = 1/x^p$, $I = (1, \infty)$
 - b) $f(x) = 1/x^p$, I = (0, 1)
 - c) $f(x) = 1/(x \log^p x)$, $I = (e, \infty)$
 - d) $f(x) = 1/(1+x^p)$, $I = (0, \infty)$
 - e) $f(x) = \log^a x/x^p$, where a > 0 is fixed, and $I = (1, \infty)$
- **5.4.3.** Let p > 0. Show that $\sin x/x^p$ is improperly integrable on $[1, \infty)$ and that $\cos x/\log^p x$ is improperly integrable on $[e, \infty)$.
- **5.4.4.** Decide which of the following functions are improperly integrable on *I*.
 - a) $f(x) = \sin x$, $I = (0, \infty)$

 - b) $f(x) = 1/x^2$, I = [-1, 1]c) $f(x) = x^{-1} \sin(x^{-1})$, $I = (1, \infty)$
 - d) $f(x) = \log(\sin x)$, I = (0, 1)
 - e) $f(x) = (1 \cos x)/x^2$, $I = (0, \infty)$
- **5.4.5.** Use the examples provided by Exercise 5.4.2b to show that the product of two improperly integrable functions might not be improperly integrable.
- **5.4.6.** Suppose that f, g are nonnegative and locally integrable on [a, b]and that

$$L := \lim_{x \to b-} \frac{f(x)}{g(x)}$$

exists as an extended real number.

- a) Show that if $0 \le L < \infty$ and g is improperly integrable on [a, b), then so is f.
- b) Show that if $0 < L \le \infty$ and g is not improperly integrable on [a, b), then neither is f.
- **5.4.7.** a) Suppose that f is improperly integrable on $[0, \infty)$. Prove that if L = 0 $\lim_{x\to\infty} f(x)$ exists, then L=0.
 - b) Let

$$f(x) = \begin{cases} 1 & n \le x < n + 2^{-n}, \ n \in \mathbb{N} \\ 0 & \text{otherwise.} \end{cases}$$

Prove that f is improperly integrable on $[0, \infty)$ but $\lim_{x\to\infty} f(x)$ does not exist.

5.4.8. Prove that if f is absolutely integrable on $[1, \infty)$, then

$$\lim_{n \to \infty} \int_{1}^{\infty} f(x^{n}) dx = 0.$$

5.4.9. Assuming $e = \lim_{n \to \infty} \sum_{k=0}^{n} 1/k!$ (see Example 7.45), prove that

$$\lim_{n \to \infty} \left(\frac{1}{n!} \int_{1}^{\infty} x^{n} e^{-x} dx \right) = 1.$$

5.4.10. a) Prove that

$$\int_0^{\pi/2} e^{-a\sin x} \ dx \le \frac{2}{a}$$

for all a > 0.

b) What happens if $\cos x$ replaces $\sin x$?

*5.5 FUNCTIONS OF BOUNDED VARIATION

This section uses no material from any other enrichment section.

In this section we study functions which do not wiggle too much. These functions, which play a prominent role in the theory of Fourier series (see Sections *14.3 and *14.4) and probability theory, are important tools for theoretical as well as applied mathematics.

Let $\phi:[a,b]\to \mathbf{R}$. To measure how much ϕ wiggles on an interval [a,b], set

$$V(\phi, P) = \sum_{j=1}^{n} |\phi(x_j) - \phi(x_{j-1})|$$

for each partition $P = \{x_0, x_1, \dots, x_n\}$ of [a, b]. The variation of $\dot{\phi}$ is defined by

$$Var(\phi) := \sup\{V(\phi, P) : P \text{ is a partition of } [a, b]\}.$$
 (19)

5.50 Definition.

Let [a, b] be a closed, nondegenerate interval and $\phi : [a, b] \to \mathbf{R}$. Then ϕ is said to be of *bounded variation* on [a, b] if and only if $Var(\phi) < \infty$.

The following three remarks show how the collection of functions of bounded variation is related to other collections of functions we have studied.

5.51 Remark. If $\phi \in C^1[a,b]$, then ϕ is of bounded variation on [a,b]. However, there exist functions of bounded variation which are not continuously differentiable.

Proof. Let $P = \{x_0, x_1, \dots, x_n\}$ be a partition of [a, b]. By the Extreme Value Theorem, there is an M > 0 such that $|\phi'(x)| \le M$ for all $x \in [a, b]$. Therefore,