Cauchy for each $x \in E$. 1 2.29).

uality in (4) as $m \to \infty$. and $x \in E$. Hence, by

e derivative sign (comnom Apostol [1].

suppose that f_n is a b). If each fn is difb) as $n \to \infty$, then f_n

(5)

verges uniformly on By the Mean Value

$$f_n'(\xi) - f_m'(\xi).$$

there is an $N \in \mathbb{N}$

for x = c because

that by the claim, = x_0 . Since $f_n(x_0)$

converges as $n \to \infty$ by hypothesis, it follows from (5) and $b - a < \infty$ that f_n converges uniformly on (a, b) as $n \to \infty$.

Fix $c \in (a, b)$. Define f, g on (a, b) by $f(x) := \lim_{n \to \infty} f_n(x)$ and g(x) := $\lim_{n\to\infty} g_n(x)$. We need to show that

$$f'(c) = \lim_{n \to \infty} f'_n(c). \tag{6}$$

Since each g_n is continuous at c, the claim implies g is continuous at c. Since $g_n(c) = f'_n(c)$, it follows that the right side of (6) can be written as

$$\lim_{n\to\infty} f'_n(c) = \lim_{n\to\infty} g_n(c) = g(c) = \lim_{x\to c} g(x).$$

On the other hand, if $x \neq c$ we have by definition that

$$\frac{f(x)-f(c)}{x-c}=\lim_{n\to\infty}\frac{f_n(x)-f_n(c)}{x-c}=\lim_{n\to\infty}g_n(x)=g(x).$$

Therefore, the left side of (6) also reduces to

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} g(x).$$

This verifies (6), and the proof of the theorem is complete.

EXERCISES

- **7.1.1.** a) Prove that $x/n \to 0$ uniformly, as $n \to \infty$, on any closed interval
 - b) Prove that $1/(nx) \rightarrow 0$ pointwise but not uniformly on (0, 1) as $n \to \infty$.
- **7.1.2.** Prove that the following limits exist and evaluate them.
 - a) $\lim_{n \to \infty} \int_1^3 \frac{nx^{99} + 5}{x^3 + nx^{66}} dx$
 - b) $\lim_{x \to 0} \int_0^2 e^{x^2/n} dx$
 - c) $\lim_{n\to\infty} \int_0^3 \sqrt{\sin\frac{x}{n} + x + 1} \, dx$
- **7.1.3.** A sequence of functions f_n is said to be *uniformly bounded* on a set E if and only if there is an M > 0 such that $|f_n(x)| \le M$ for all $x \in E$ and all

Suppose that for each $n \in \mathbb{N}$, $f_n : E \to \mathbb{R}$ is bounded. If $f_n \to f$ uniformly on E, as $n \to \mathbb{N}$, prove that $\{f_n\}$ is uniformly bounded on E and f is a bounded function on E.

7.1.4. Let [a, b] be a closed bounded interval, $f : [a, b] \rightarrow \mathbf{R}$ be bounded, and $g:[a,b]\to \mathbf{R}$ be continuous with g(a)=g(b)=0. Let f_n be a