Math 125B, Winter 2015.

Homework 4 Solutions

- 5.1.0. (c) Yes. First, \sqrt{f} is Riemann integrable on any closed interval on which f is integrable, by composition with continuous function. Then, for any number $y \geq 0$, $\sqrt{y} \leq y + 1$ (when $y \leq 1$, this is trivial, and when $y \geq 1$, $\sqrt{y} \leq y$). So $\sqrt{f} \leq f + 1$. As both f and 1 are absolutely integrable on (a, b), so is \sqrt{f} .
- (d) Yes. By noting that, for example, $\max(f,g)$ equals either f or g, it is clear that $|\max(f,g)| \le \max(|f|,|g|) \le |f| + |g|$ and $|\min(f,g)| \le \max(|f|,|g|) \le |f| + |g|$. Absolute integrability then follows from the comparison theorems.
- 5.4.1 (c). By change of variable $t = \sin x$,

$$\lim_{a \to 0+} \int_{a}^{\pi/2} \frac{\cos x}{(\sin x)^{1/3}} \, dx = \lim_{a \to 0+} \int_{\sin a}^{1} t^{-1/3} \, dx = \lim_{a \to 0+} \frac{3}{2} (1 - (\sin a)^{2/3}) = \frac{3}{2}.$$

- 5.4.2 (d). By comparison to $g(x) = x^{-p}$ (observe that $f(x)/g(x) \to 1$ as $x \to \infty$), the integral converges exactly when p > 1.
- 5.4.4 (e). As $1 \cos x = x^2/2 + \mathcal{O}(x^4)$, the function is bounded near 0 and we only need to show that $\int_1^\infty f(x) dx$ is convergent. However, on this interval we may use the fact that $|f(x)| \leq 2x^{-2}$ and the fact that $\int_1^\infty x^{-2} dx$ is convergent, so $\int_1^\infty |f(x)| dx$ converges by comparison and then so does $\int_1^\infty f(x) dx$ by absolute convergence.
- 5.4.8. By change of variable $x = t^{1/n}$, one may rewrite

$$\left| \int_{1}^{\infty} f(x^{n}) dx \right| = \frac{1}{n} \left| \int_{1}^{\infty} f(t) t^{1/n - 1} dt \right| \le \frac{1}{n} \int_{1}^{\infty} |f(t)| t^{1/n - 1} dt \le \frac{1}{n} \int_{1}^{\infty} |f(t)| dt \to 0$$

as $n \to \infty$.

7.1.2 (a) Let $f_n(x) = \frac{nx^{99} + 5}{x^3 + nx^{66}}$ and $f(x) = x^{33}$. Then,

$$\sup_{x \in [1,3]} |f_n(x) - f(x)| = \sup_{x \in [1,3]} \frac{|5 - x^{36}|}{x^3 + nx^{66}} \le \frac{5 + 3^{36}}{n},$$

which goes to 0 as $n \to \infty$. Thus $f_n \to f$ uniformly on [1, 3] and then $\int_1^3 f_n \to \int_1^3 f = (3^{34} - 1)/34$. (c) Let $f_n(x) = \sqrt{\sin(x/n) + x + 1}$ and $f(x) = \sqrt{x + 1}$. Then,

$$\sup_{x \in [0,3]} |f_n(x) - f(x)| = \sup_{x \in [0,3]} \frac{|\sin(x/n) + x + 1 - (x+1)|}{\sqrt{\sin(x/n) + x + 1} + \sqrt{x+1}} \le \sup_{x \in [0,3]} \sin(x/n) \le \sup_{x \in [0,3]} x/n \le 3/n,$$

goes to 0 as $n \to \infty$. Thus $f_n \to f$ uniformly on [0,3] and then $\int_0^3 f_n \to \int_0^3 f = \frac{14}{3}$.