for all $y \in [c, d]$ which satisfy $|y - y_0| < \delta$. Then

$$|F(y) - F(y_0)| \le \left| F(y) - \int_A^B f(x, y) \, dx \right| + \left| \int_A^B (f(x, y) - f(x, y_0)) \, dx \right| + \left| F(y_0) - \int_A^B f(x, y_0) \, dx \right|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon$$

for all $y \in [c, d]$ which satisfy $|y - y_0| < \delta$.

The proof of Theorem 11.5 can be modified to prove the following result.

*11.9 **Theorem.** Suppose that a < b are extended real numbers, that c < d are finite real numbers, that $f : (a,b) \times [c,d] \rightarrow \mathbf{R}$ is continuous, and that the improper integral

$$F(y) = \int_{a}^{b} f(x, y) dx$$

exists for all $y \in [c, d]$. If $f_y(x, y)$ exists and is continuous on $(a, b) \times [c, d]$ and if

$$\phi(y) = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y) dx$$

converges uniformly on [c, d], then F is differentiable on [c, d] and $F'(y) = \phi(y)$; that is,

$$\frac{d}{dy} \int_{a}^{b} f(x, y) dx = \int_{a}^{b} \frac{\partial f}{\partial y}(x, y) dx$$

for all $y \in [c, d]$.

For a result about interchanging two partial integrals, see Theorem 12.31 and Exercise 12.3.10.

EXERCISES

11.1.1. Compute all mixed second-order partial derivatives of each of the following functions and verify that the mixed partial derivatives are equal.

a)
$$f(x, y) = xe^y$$
 b) $f(x, y) = \cos(xy)$ c) $f(x, y) = \frac{x + y}{x^2 + 1}$

11.1.2. For each of the following functions, compute f_x and determine where it is continuous.

for improper intereover, since M(x) ers A, B such that

lave

|f(x,y)| dx

 $x)\,dx<\varepsilon.$

11.4.

cs, that c < d are cs. If

is,

A, B such that

a)
$$f(x, y) = \begin{cases} \frac{x^4 + y^4}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

b)
$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{\sqrt[3]{x^2 + y^2}} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

- **11.1.3.** Suppose that r > 0, that $\mathbf{a} \in \mathbf{R}^n$, and that $\mathbf{f} : B_r(\mathbf{a}) \to \mathbf{R}^m$. If all first-order partial derivatives of \mathbf{f} exist on $B_r(\mathbf{a})$ and satisfy $\mathbf{f}_{x_j}(\mathbf{x}) = \mathbf{0}$ for all $\mathbf{x} \in B_r(\mathbf{a})$ and all j = 1, 2, ..., n, prove that \mathbf{f} has only one value on $B_r(\mathbf{a})$.
- **11.1.4.** Suppose that $H = [a, b] \times [c, d]$ is a rectangle, that $f : H \to \mathbf{R}$ is continuous, and that $g : [a, b] \to \mathbf{R}$ is integrable. Prove that

$$F(y) = \int_{a}^{b} g(x) f(x, y) dx$$

is uniformly continuous on [c, d].

11.1.5. Evaluate each of the following expressions.

a)
$$\lim_{y \to 0} \int_0^1 e^{x^3 y^2 + x} \, dx$$

b)
$$\frac{d}{dy} \int_0^1 \sin(e^x y - y^3 + \pi - e^x) \, dx \quad \text{at } y = 1$$

c)
$$\frac{\partial}{\partial x} \int_{1}^{3} \sqrt{x^3 + y^3 + z^3 - 2} \, dz$$
 at $(x, y) = (1, 1)$

- **11.1.6.** Suppose that f is a continuous real function.
 - a) If $\int_0^1 f(x) dx = 1$, find the exact value of

$$\lim_{y \to 0} \int_0^2 f(|x - 1|) e^{x^2 y + xy^2} dx.$$

b) If f is C^1 on **R** and $\int_0^{\pi} f'(x) \sin x dx = e$, find the exact value of

$$e + \lim_{y \to 0} \int_0^{\pi} f(x) \cos(y^5 + \sqrt[3]{y} + x) dx.$$

c) If $\int_0^1 f(\sqrt{x})e^x dx = 6$, find the exact value of

$$\frac{d}{dx} \int_0^1 f(y)e^{xy+y^2} dy \quad \text{at } x = 0.$$