Math 125B, Winter 2015.

Homework 6 Solutions

11.1.2. (a) For $(x,y) \neq (0,0)$,

$$f_x(x,y) = \frac{2x(x^4 + 2x^2y^2 - y^4)}{(x^2 + y^2)^2},$$

while $f(x,0)=x^2$ implies $f_x(0,0)=0$. If (x,y)=r(a,b) with $a^2+b^2=1$, we have

$$|f_x(x,y)| = r \cdot |2a(a^4 + 2a^2b^2 - b^4)| \le r \cdot 8,$$

as $|a| \le 1$ and $|b| \le 1$. The bound above is independent of (a, b) and goes to 0 as $r \to 0$. Therefore f_x is continuous everywhere on \mathbb{R}^2 .

(d) Now, for $(x, y) \neq (0, 0)$,

$$f_x(x,y) = \frac{4x(x^2 + 2y^2)}{3(x^2 + y^2)^{4/3}}$$

and $f(x,0) = x^{4/3}$, so again $f_x(0,0) = 0$. Using the same representation as in (a),

$$|f_x(x,y)| = \frac{4}{3}r^{1/3} \cdot |a(a^2 + 2b^2)| \le 4r^{1/3},$$

so again we have a bound indepenent of r that goes to 0 as $r \to 0$. Therefore f_x is continuous everywhere on \mathbb{R}^2 .

11.1.3. We may assume f is a scalar function, that is, that m = 1, as otherwise we argue for each coordinate function separately.

First we show that if $x, y \in B_r(a)$ differ in only one coordinate, then f(x) = f(y). To show this, assume that, for some $k \le n$, $x_k < y_k$ and $x_i = y_i$ for $i \ne k$, that is, x and y lie on a line parallel to one of the axes. Define the vector

$$v(t) = (x_1, \dots, x_{k-1}, t, x_{k+1}, \dots, x_n).$$

The first thing to show is that $v(t) \in B_r(a)$ for every $t \in [x_k, y_k]$. (One can easily prove this this by using the fact that $B_r(a)$ is convex, but we present a direct argument.) For such t, $x_k - a_k \le t - a_k \le y_k - a_k$ and so either $|t - a_k| \le |y_k - a_k|$ (if $t - a_k \ge 0$) or $|t - a_k| \le |x_k - a_k|$ (if $t - a_k \le 0$). In the first case, $||v(t) - a|| \le ||x - a|| \le r$ and in the second $||v(t) - a|| \le ||y - a|| \le r$.

We now define the function $g:[x_k,y_k]\to\mathbb{R}$ by

$$g(t) = f(v(t)) = f(x_1, \dots, x_{k-1}, t, x_{k+1}, \dots, x_n).$$

Then g is differentiable and $g'(t) = \frac{\partial f}{\partial x_k}(v(t)) = 0$ and so g is constant; in particular $f(x) = g(x_k) = g(y_k) = f(y)$.

Assume now $x \in B_r(a)$ is arbitrary. We will prove that f(x) = f(a) by connecting a and x with lines parallel to the coordinate axes. For k = 0, 1, ..., n, consider the vector v_k which has first k

coordinates equal to those of x and the remaining coordinates equal to those of a. Thus $v_0 = a$ and $v_n = x$; also,

$$||v_k - a||^2 = (x_1 - a_1)^2 + \ldots + (x_k - a_k)^2 \le (x_1 - a_1)^2 + \ldots + (x_n - a_n)^2 = ||x - a||^2 < r^2,$$

so $v_k \in B_r(a)$ for all k. Moreover, for each $1 \le k \le n$, v_{k-1} and v_k differ only in the kth coordinate, and so $f(v_{k-1}) = f(v_k)$. Therefore $f(v_0) = f(v_n)$, that is, f(a) = f(x).