The Chain Rule can be used to compute individual partial derivatives without writing out the entire matrices $D\mathbf{f}$ and $D\mathbf{g}$. For example, suppose that $f(u_1, \ldots, u_m)$ is differentiable from \mathbf{R}^m to \mathbf{R} , that $\mathbf{g}(x_1, \ldots, x_n)$ is differentiable from \mathbf{R}^n to \mathbf{R}^m , and that $z = f(\mathbf{g}(x_1, \ldots, x_n))$. Since $Df = \nabla f$ and the jth column of $D\mathbf{g}$ consists of first partial derivatives, with respect to x_j , of the components $u_k := g_k(x_1, \ldots, x_n)$, it follows from the Chain Rule and the definition of matrix multiplication that

$$\frac{\partial z}{\partial x_j} = \frac{\partial f}{\partial u_1} \frac{\partial u_1}{\partial x_j} + \dots + \frac{\partial f}{\partial u_m} \frac{\partial u_m}{\partial x_j}$$

for j = 1, 2, ..., n. Here are two concrete examples which illustrate this principle.

11.29 EXAMPLES.

i) If $F, G, H : \mathbb{R}^2 \to \mathbb{R}$ are differentiable and z = F(x, y), where $x = G(r, \theta)$, and $y = H(r, \theta)$, then

$$\frac{\partial z}{\partial r} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial r} \quad \text{and} \quad \frac{\partial z}{\partial \theta} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial \theta}.$$

ii) If $f: \mathbf{R}^3 \to \mathbf{R}$ and $\phi, \psi, \sigma: \mathbf{R} \to \mathbf{R}$ are differentiable and w = f(x, y, z), where $x = \phi(t), y = \psi(t)$, and $z = \sigma(t)$, then

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}.$$

EXERCISES

- **11.4.1.** Let $F: \mathbb{R}^3 \to \mathbb{R}$ and $f, g, h: \mathbb{R}^2 \to \mathbb{R}$ be C^2 functions. If w = F(x, y, z), where x = f(p, q), y = g(p, q), and z = h(p, q), find formulas for w_p, w_q , and w_{pp} .
- 11.4.2. Let r > 0, let $\mathbf{a} \in \mathbb{R}^n$, and suppose that $\mathbf{g} : B_r(\mathbf{a}) \to \mathbb{R}^m$ is differentiable at \mathbf{a} .
 - a) If $f: B_r(g(\mathbf{a})) \to \mathbf{R}$ is differentiable at $\mathbf{g}(\mathbf{a})$, prove that the partial derivatives of $h = f \circ \mathbf{g}$ are given by

$$\frac{\partial h}{\partial x_j}(\mathbf{a}) = \nabla f(\mathbf{g}(\mathbf{a})) \cdot \frac{\partial \mathbf{g}}{\partial x_j}(\mathbf{a})$$

for j = 1, 2, ..., n.

b) If n = m and $\mathbf{f} : B_r(g(\mathbf{a})) \to \mathbf{R}^n$ is differentiable at $\mathbf{g}(\mathbf{a})$, prove that

 $\det(D(\mathbf{f} \circ \mathbf{g})(\mathbf{a})) = \det(D\mathbf{f}(\mathbf{g}(\mathbf{a}))) \det(D\mathbf{g}(\mathbf{a})).$

11.4.3. Suppose that $k \in \mathbb{N}$ and that $f : \mathbb{R}^n \to \mathbb{R}$ is homogeneous of order k; that is, that $f(\rho \mathbf{x}) = \rho^k f(\mathbf{x})$ for all $\mathbf{x} \in \mathbf{R}^n$ and all $\rho \in \mathbf{R}$. If f is differentiable on \mathbf{R}^n , prove that

$$x_1 \frac{\partial f}{\partial x_1}(\mathbf{x}) + \dots + x_n \frac{\partial f}{\partial x_n}(\mathbf{x}) = kf(\mathbf{x})$$

for all $\mathbf{x} = (x_1, \dots, x_n) \in \mathbf{R}^n$.

11.4.4. Let $f, g: \mathbf{R} \to \mathbf{R}$ be twice differentiable. Prove that u(x, y) := f(xy)satisfies

$$x\frac{\partial u}{\partial x} - y\frac{\partial u}{\partial y} = 0,$$

and v(x, y) := f(x - y) + g(x + y) satisfies the wave equation; that is,

$$\frac{\partial^2 v}{\partial x^2} - \frac{\partial^2 v}{\partial y^2} = 0.$$

11.4.5. Let $f, g: \mathbb{R}^2 \to \mathbb{R}$ be differentiable and satisfy the Cauchy–Riemann equations; that is, that

$$\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$$
 and $\frac{\partial f}{\partial y} = -\frac{\partial g}{\partial x}$

hold on \mathbf{R}^2 . If $u(r, \theta) = f(r \cos \theta, r \sin \theta)$ and $v(r, \theta) = g(r \cos \theta, r \sin \theta)$, prove that

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}, \qquad \frac{\partial v}{\partial r} = -\frac{1}{r} \frac{\partial u}{\partial \theta} \qquad r \neq 0.$$

11.4.6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be \mathbb{C}^2 on \mathbb{R}^2 and set $u(r, \theta) = f(r \cos \theta, r \sin \theta)$. If fsatisfies the Laplace equation; that is, if

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0,$$

prove for each $r \neq 0$ that

$$\frac{1}{r^2}\frac{\partial^2 u}{\partial \theta^2} + \frac{1}{r}\frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial r^2} = 0.$$

11.4.7. Let

$$u(x,t) = \frac{e^{-x^2/4t}}{\sqrt{4\pi t}}, \quad t > 0, \ x \in \mathbf{R}.$$

a) Prove that u satisfies the heat equation (i.e., $u_{xx} - u_t = 0$ for all t > 0and $x \in \mathbf{R}$).

b) If a > 0, prove that $u(x, t) \to 0$, as $t \to 0+$, uniformly for $x \in [a, \infty)$.

11.4.8. Let $u: \mathbb{R} \to [0, \infty)$ be differentiable. Prove that for each $(x, y, z) \neq (0, 0, 0)$,

$$F(x, y, z) := u\left(\sqrt{x^2 + y^2 + z^2}\right)$$

satisfies

$$\left(\left(\frac{\partial F}{\partial x} \right)^2 + \left(\frac{\partial F}{\partial y} \right)^2 + \left(\frac{\partial F}{\partial z} \right)^2 \right)^{1/2} = \left| u' \left(\sqrt{x^2 + y^2 + z^2} \right) \right|.$$

11.4.9. Suppose that z = F(x, y) is differentiable at (a, b), that $F_y(a, b) \neq 0$, and that I is an open interval containing a. Prove that if $f: I \to \mathbf{R}$ is differentiable at a, f(a) = b, and F(x, f(x)) = 0 for all $x \in I$, then

$$\frac{df}{dx}(a) = \frac{-\frac{\partial F}{\partial x}(a,b)}{\frac{\partial F}{\partial y}(a,b)}.$$

11.4.10. Suppose that I is a nonempty, open interval and that $\mathbf{f}: I \to \mathbf{R}^m$ is differentiable on I. If $\mathbf{f}(I) \subseteq \partial B_r(\mathbf{0})$ for some fixed r > 0, prove that $\mathbf{f}(t)$ is orthogonal to $\mathbf{f}'(t)$ for all $t \in I$.

11.4.11. Let V be open in \mathbb{R}^n , $\mathbf{a} \in V$, $f : V \to \mathbb{R}$, and suppose that f is differentiable at \mathbf{a} .

a) Prove that the directional derivative $D_{\mathbf{u}}f(\mathbf{a})$ exists (see Exercise 11.2.10) for each $\mathbf{u} \in \mathbf{R}^n$ such that $\|\mathbf{u}\| = 1$ and $D_{\mathbf{u}}f(\mathbf{a}) = \nabla f(\mathbf{a}) \cdot \mathbf{u}$.

b) If $\nabla f(\mathbf{a}) \neq \mathbf{0}$ and θ represents the angle between \mathbf{u} and $\nabla f(\mathbf{a})$, prove that $D_{\mathbf{u}} f(\mathbf{a}) = \|\nabla f(\mathbf{a})\| \cos \theta$.

c) Show that as **u** ranges over all unit vectors in \mathbb{R}^n , the maximum of $D_{\mathbf{u}} f(\mathbf{a})$ is $\|\nabla f(\mathbf{a})\|$, and it occurs when **u** is parallel to $\nabla f(\mathbf{a})$.

11.5 THE MEAN VALUE THEOREM AND TAYLOR'S FORMULA

Using $D\mathbf{f}$ as a replacement for f', we guess that the multidimensional analogue of the Mean Value Theorem is $\mathbf{f}(\mathbf{x}) - \mathbf{f}(\mathbf{a}) = D\mathbf{f}(\mathbf{c})(\mathbf{x} - \mathbf{a})$ for some \mathbf{c} "between" \mathbf{x} and \mathbf{a} ; that is, some $\mathbf{c} \in L(\mathbf{x}; \mathbf{a})$, the line segment from \mathbf{a} to \mathbf{x} . The following result shows that this guess is correct when \mathbf{f} is real valued (see also Exercises 11.5.6 and 11.5.9).

11.30 Theorem. [MEAN VALUE THEOREM FOR REAL VALUED FUNCTIONS].

Let V be open in \mathbb{R}^n and suppose that $f: V \to \mathbb{R}$ is differentiable on V. If $\mathbf{x}, \mathbf{a} \in V$ and $L(\mathbf{x}; \mathbf{a}) \subset V$, then there is a $\mathbf{c} \in L(\mathbf{x}; \mathbf{a})$ such that

$$f(\mathbf{x}) - f(\mathbf{a}) = \nabla f(\mathbf{c}) \cdot (\mathbf{x} - \mathbf{a}). \tag{24}$$