Section 11.5 The Mean Value Theorem and Taylor’s Formula 423

\[f(x) - f(a) = \sum_{k=1}^{p-1} \frac{1}{k!} D^k f(a; h) + \frac{1}{(p-1)!} \int_0^1 (1-t)^{p-1} D^p f(a+th; h) \, dt. \]

11.5.6. Let \(r > 0 \), \(a, b \in \mathbb{R} \), \(f : B_r(a, b) \to \mathbb{R} \) be differentiable, and \((x, y) \in B_r(a, b)\).

a) Let \(g(t) = f(tx + (1-t)a, y) + f(a, ty + (1-t)b) \) and compute the derivative of \(g \).

b) Prove that there are numbers \(c \) between \(a \) and \(x \), and \(d \) between \(b \) and \(y \) such that

\[f(x, y) - f(a, b) = (x - a) f_x(c, y) + (y - b) f_y(a, d). \]

(This is Exercise 12.20 in Apostol [1].)

11.5.7. Suppose that \(0 < r < 1 \) and that \(f : B_1(0) \to \mathbb{R} \) is continuously differentiable. If there is an \(M > 0 \) such that \(|f(x)| \leq \|x\|^a \) for all \(x \in B_r(0) \), prove that there is a \(M > 0 \) such that \(|f(x)| \leq M \|x\| \) for all \(x \in B_r(0) \).

11.5.8. Suppose that \(V \) is open in \(\mathbb{R}^n \), that \(f : V \to \mathbb{R} \) is \(C^2 \) on \(V \), and that \(f_{xy}(a) = 0 \) for some \(a \in H \) and all \(j = 1, \ldots, n \). Prove that if \(H \) is a compact convex subset of \(V \), then there is a constant \(M \) such that

\[|f(x) - f(a)| \leq M \|x - a\|^2 \]

for all \(x \in H \).

11.5.9. Let \(f : \mathbb{R}^n \to \mathbb{R} \). Suppose that for each unit vector \(u \in \mathbb{R}^n \), the directional derivative \(D_u f(a + tu) \) exists for \(t \in [0, 1] \) (see Definition 11.19). Prove that

\[f(a + tu) - f(a) = D_u f(a + tu) \]

for some \(t \in (0, 1) \).

11.5.10. Suppose that \(V \) is open in \(\mathbb{R}^2 \), that \((a, b) \in V \), and that \(f : V \to \mathbb{R} \) is \(C^3 \) on \(V \). Prove that

\[\lim_{r \to 0} \frac{1}{\pi r^2} \int_0^{2\pi} f(a + r \cos \theta, b + r \sin \theta) \cos(2\theta) \, d\theta = f_{xx}(a, b) - f_{xy}(a, b). \]

11.5.11. Suppose that \(V \) is open in \(\mathbb{R}^2 \), that \(H = [a, b] \times [0, c] \subset V \), that \(u : V \to \mathbb{R} \) is \(C^2 \) on \(V \), and that \(u(x_0, t_0) \geq 0 \) for all \((x_0, t_0) \in \partial H \).

a) Show that, given \(\varepsilon > 0 \), there is a compact set \(K \subset H^o \) such that \(u(x, t) \geq -\varepsilon \) for all \((x, t) \in H \setminus K \).

b) Suppose that \(u(x_1, t_1) = -\ell < 0 \) for some \((x_1, t_1) \in H^o \), and choose \(r > 0 \) so small that \(2rt_1 < \ell \). Apply part a) to \(\varepsilon := \ell / 2 - rt_1 \) to choose the compact set \(K \), and prove that the minimum of

\[w(x, t) := u(x, t) + r(t - t_1) \]

on \(H \) occurs at some \((x_2, t_2) \in K \).