Notes on inverse functions

Theorem 1 (Inverse Function Theorem). Assume $A \subseteq \mathbb{R}^n$ is open and $f : A \to \mathbb{R}^n$ is a function in $C^r(A)$ for some $r \geq 1$. Assume that $a \in A$ and that $\det Df(a) \neq 0$. Then there exist open sets $U \subseteq A$ and $V \subseteq \mathbb{R}^n$ so that $a \in U$, $f : U \to V$ is one-to-one and onto, and $f^{-1} : V \to U$ is in $C^r(V)$. Moreover, if $y \in V$, and $x \in U$ with $f(x) = y$, $Df(x)$ is invertible and

\[Df^{-1}(y) = Df(x)^{-1}. \]

Remark. The exponent -1 on the right of (1) is the inverse of the $n \times n$ matrix $Df(x)$, while on the left of (1) it indicates the inverse function.

Definition. Assume $A \subseteq \mathbb{R}^n$ is open and $f : A \to \mathbb{R}^n$ is a function. We say that f has a differentiable local inverse at $a \in A$ if there exist open sets $U \subseteq A$ and $V \subseteq \mathbb{R}^n$ so that $a \in U$, $f : U \to V$ is one-to-one and onto, and $f^{-1} : V \to U$ is differentiable on V.

The Inverse Function Theorem gives the sufficient condition for existence of differentiable local inverse. You should note that f^{-1} may exist without being differentiable. For example, $f : \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^3$ is in $C^\infty(\mathbb{R})$ and has inverse $f^{-1}(x) = x^{1/3}$ that is not differentiable at $x = 0$. The next lemma implies (1) assuming the rest of the Inverse Function Theorem holds.

Lemma 1. Assume $A, B \subseteq \mathbb{R}^n$ is open and $f : A \to B$ is one-to-one and onto. Assume that $a \in A$, $b = f(a)$, and that $Df(a)$ and $Df^{-1}(b)$ both exist. Then $Df(a)$ is invertible and

\[Df^{-1}(b) = Df(a)^{-1}. \]

Proof. If we denote by $I : \mathbb{R}^n \to \mathbb{R}^n$ the (linear) identity map, then on A

\[f^{-1} \circ f = I, \]

and then by the chain rule

\[Df^{-1}(b) \cdot Df(a) = I, \]

which ends the proof.

Lemma 1 and Theorem 1 together give the following result, which is the one you should remember for the exams.

Theorem 2. Assume $A \subseteq \mathbb{R}^n$ is open and $f : A \to \mathbb{R}^n$ is a function in $C^1(A)$. Then f has a differentiable local inverse at $a \in A$ if and only if $\det Df(a) \neq 0$ and in this case $Df^{-1}(f(a)) = Df(a)^{-1}$.

We now proceed through the proof of Theorem 1, which does require some effort.
Lemma 2. Assume $A \subseteq \mathbb{R}^n$ is open and $f : A \to \mathbb{R}^n$ is a function in $C^1(A)$ for some $r \geq 1$. Assume that $a \in A$ and that $\det Df(a) \neq 0$. Then there exists an open set $U \subseteq A$ with $a \in U$ and an $\alpha > 0$ so that

$(2) \quad \|f(x_1) - f(x_2)\| \geq \alpha \|x_1 - x_2\|$

for all $x_1, x_2 \in U$. In particular f is one-to-one on U.

Proof. Let $T = Df(a)$. Then

$$
||x_1 - x_2|| = ||T^{-1}(Tx_1 - Tx_2)|| \leq M||Tx_1 - Tx_2||
$$

for some $M > 0$. Pick $\alpha = 1/(2M)$.

Now let $g(x) = f(x) - Tx$. Then, on A, $Dg = Df - T$ and so $Dg(a) = 0$. As $g \in C^1(A)$, we can choose an $\epsilon > 0$ so that the absolute value of all entries of Dg is strictly less than α/n^2 for $x \in B_\epsilon(a)$. This ball will be our open set U.

Fix an $i \in \{1, \ldots, n\}$. By the Mean Value Theorem, for any $x_1, x_2 \in U$, there exists a $c \in U$ so that

$$
|g_i(x_1) - g_i(x_2)| = |\nabla g_i(c) \cdot (x_1 - x_2)| \leq n \cdot \frac{\alpha}{n^2} \|x_1 - x_2\| = \frac{\alpha}{n} \|x_1 - x_2\|.
$$

Therefore, $\|g(x_1) - g(x_2)\| \leq \alpha \|x_1 - x_2\|$, and then

$$
\alpha \|x_1 - x_2\| \geq \|g(x_1) - g(x_2)\|
$$

$$
= \|f(x_1) - Tx_1 - f(x_2) + Tx_2\|
$$

$$
\geq \|Tx_1 - Tx_2\| - \|f(x_1) - f(x_2)\|
$$

$$
\geq 2\alpha \|x_1 - x_2\| - \|f(x_1) - f(x_2)\|,
$$

from which the claimed inequality follows.

The most difficult part of the proof of Inverse Function Theorem is the next preliminary result.

Lemma 3. Assume $A \subseteq \mathbb{R}^n$ is open and $f : A \to \mathbb{R}^n$ is a function in $C^r(A)$ for some $r \geq 1$. Let $B = f(A)$. If f is one-to-one on A, and $\det Df(x) \neq 0$ for all $x \in A$, then B is open and $f^{-1} : B \to A$ is in $C^r(B)$.

Proof. We divide the proof into several steps.

Step 1: B is open.

Pick a $b \in B$, and let $a = f^{-1}(B) \in A$. Then pick an $r > 0$ so that $Q = B_{\epsilon}(a) \subseteq A$. Then ∂Q is compact and so is $f(\partial Q)$, which is therefore closed. Moreover, as f is one-to-one, $b \notin f(\partial Q)$. Thus there is a $\delta > 0$ so that $B_{\delta}(b) \cap f(\partial Q) = \emptyset$.

Pick an arbitrary $y \in B_{\delta}(b)$ we will show that there is an $x_0 \in A$ so that $f(x_0) = y$, which will show that $B_{\delta}(b) \subseteq f(A)$ and establish Step 1. Let $\varphi(x) = \|f(x) - y\|^2$. Then $\varphi : A \to \mathbb{R}$ is in $C^r(A)$. As Q is compact, φ achieves minimum on Q, say at $x_0 \in Q$. Note that

$$
\varphi(a) = \|f(a) - y\|^2 = \|b - y\|^2 < \delta^2,
$$

and so $\min_Q \varphi < \delta^2$. On the other hand, if $x \in \partial Q$, then

$$
\|f(x) - y\| \geq \|f(x) - b\| - \|b - y\| \geq 2\delta - \delta = \delta,
$$

Recall that for $x \in \mathbb{R}^n$, $\|x\|_{\infty} = \max |x_i|$ and $\|x\|_{\infty} \leq \|x\|_2 \leq \sqrt{n} \|x\|_{\infty}$. 2
which implies that \(x_0 \notin \partial Q \), and thus is a local minimum in the interior of \(Q \). This implies\(^2\) that \(f(x_0) = y \).

\textbf{Step 2: }\(g = f^{-1} \) is continuous.

We need to show that for every open set \(U \subseteq A \), \(g^{-1}(U) \) is open. But \(g^{-1}(U) = f(U) \), which is open by Step 1.

\textbf{Step 3: }\(g = f^{-1} \) is differentiable on \(B \).

Let \(T = Df(a) \). We need to show that

\[
\frac{g(b + k) - g(b) - T^{-1}k}{||k||} \to 0
\]
as \(k \to 0 \).

By Lemma 2, there is an open set \(U \) containing \(a \), and some \(\alpha > 0 \), such that

\[
||f(x_2) - f(x_1)|| \geq \alpha ||x_2 - x_1||
\]
for all \(x_1, x_2 \in U \). By Step 1, there exists an \(\epsilon > 0 \) so that \(b + k \in f(U) \) whenever \(||k|| < \epsilon \). Thus, when \(||k|| < \epsilon \),

\[
||k|| = ||b + k - b|| \geq \alpha ||g(b + k) - g(b)||
\]
which we rewrite

\[
\frac{||g(b + k) - g(b)||}{||k||} \leq \frac{1}{\alpha}.
\]

We rewrite the expression in (3)

\[
\frac{g(b + k) - g(b) - T^{-1}k}{||k||} = -T^{-1} \left(\frac{k - T(g(b + k) - g(b))}{||g(b + k) - g(b)||} \right), \frac{||g(b + k) - g(b)||}{||k||}
\]
and we use (4); also, because \(-T^{-1} \) is linear we obtain an \(M > 0 \) so that

\[
\frac{||g(b + k) - g(b) - T^{-1}k||}{||k||} \leq \frac{M}{\alpha} \cdot \frac{||k - T(g(b + k) - g(b))||}{||g(b + k) - g(b)||}.
\]
Now we let \(h = g(b + k) - g(b) = g(b + k) - a \). By continuity of \(g \) (Step 2), \(h \to 0 \) as \(k \to 0 \). Observe that \(b + k = f(a + h) \) and so \(k = f(a + h) - f(a) \). Therefore,

\[
\frac{||g(b + k) - g(b) - T^{-1}k||}{||k||} \leq \frac{M}{\alpha} \cdot \frac{||f(a + h) - f(a) - Th||}{||h||} \to 0
\]
as \(h \to 0 \), because \(T = Df(a) \). Clearly, (5) implies (3).

\textbf{Step 4: }\(g = f^{-1} \in C^r(B) \).

We first assume that \(r = 1 \) and show that \(g \in C^1(B) \). We know that \(Dg(x) = Df(g(x))^{-1} \). Moreover, the entries of the inverse of an invertible matrix \(T \in \mathbb{R}^{n,n} \) are rational, thus \(C^\infty \), functions of entries of \(T \). As \(g \) is continuous, and the entries of \(Df \) are continuous, this implies that the entries of \(Dg \) are continuous.

Now we proceed by induction on \(r \). Assume the claim holds for functions in \(C^{r-1} \). If \(f \) is in \(C^r \), then certainly \(f \in C^{r-1} \), and \(g \in C^{r-1} \) by the induction hypothesis. Also, \(Df \) is in \(C^{r-1} \) (or more precisely its entries are) and so \(Dg \), as a composite function of two \(C^{r-1} \) functions and a \(C^\infty \) function (the inverse) is also in \(C^{r-1} \). Thus \(g \) is in \(C^r \).

\(^2\)See Problem 7 in Discussion Problems 9.
follows by the chain rule, by differentiating the equation f and the form of F open set containing (x,y), there exists an open set U such that f is defined in F and is such that $f(x,y) = 0$ for all $x \in A$ and $y \in B$. Moreover, for $x \in A$ and $y \in B$, $D_y f(x,y) \neq 0$ and

\begin{equation}
D_y f(x,y) = D_y f(x,g(x))^{-1} D_x f(x,g(x)).
\end{equation}

Proof. Define $F : G \to \mathbb{R}^{n+m}$ by $F(x,y) = (x,f(x,y))$. Then $F \in C^1(G)$ and, for $(x,y) \in G$, $D_F(x,y) = D_y f(x,y)$. Therefore $D_F(x,y) \neq 0$. The Implicit Function Theorem implies that there exists a function $g : A \to B$ in $C^r(A)$ such that $g(a) = b$ and $y = g(x)$ is the unique solution of the equation $f(x,y) = 0$ for all $x \in A$ and $y \in B$. Moreover, for $x \in A$ and $y \in B$, $D_y f(x,y) \neq 0$ and

\begin{equation}
D_y f(x,y) = D_y f(x,g(x))^{-1} D_x f(x,g(x)).
\end{equation}

Proof. Define $G : G \to \mathbb{R}^{n+m}$ by $G(x,y) = (f(x,y), h(x,y))$. Then $G \in C^1(G)$ and, for $(x,y) \in G$, $D_G(x,y) = D_x f(x,y)$ and $D_H(x,y) = D_y h(x,y)$. Therefore $D_G(x,y) \neq 0$. The Implicit Function Theorem implies that there exists a function $h : A \to B$ in $C^r(A)$ such that $h(a) = b$ and $y = h(x)$ is the unique solution of the equation $f(x,y) = 0$ for all $x \in A$ and $y \in B$. Moreover, for $x \in A$ and $y \in B$, $D_y h(x,y) \neq 0$ and

\begin{equation}
D_y f(x,y) = D_y f(x,g(x))^{-1} D_x f(x,g(x)).
\end{equation}

Next is the most famous consequence of the Inverse Function Theorem. In it, we view an \mathbb{R}^m-valued function f defined on a subset of \mathbb{R}^{n+m} as a function on $\mathbb{R}^n \times \mathbb{R}^m$. That is, f is given by $f(x,y)$, where $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$. The next theorem tells us when can we the relation $f(x,y) = 0$ defines a differentiable function $y = g(x)$ from n variables to m variables. We will denote $D_y f$ to be the derivative of f with respect to y when x is held constant, that is, the $m \times m$ matrix of partial derivatives of f with respect to coordinates of y. Similarly, $D_x f(x,y)$ is the $n \times m$ matrix of partial derivatives of f with respect to coordinates of x. We should note that we assume that the coordinates are arranged so that the last m of them are those of y. That is, of course not necessary: the coordinates of y could be the first m, or any other among the $n+m$ inputs of f.

Theorem 3 (Implicit Function Theorem). Assume $G \subset \mathbb{R}^{n+m}$ is open and $f : G \to \mathbb{R}^m$ is in $C^r(G)$ for some $r \geq 1$. Suppose $(a,b) \in G$ is such that $f(a,b) = 0$ and $D_y f(a,b) \neq 0$. Then there is an open set $A \subset \mathbb{R}^n$ containing a, an open set $B \subset \mathbb{R}^m$ containing b, and a function $g : A \to B$ in $C^r(A)$ so that $g(a) = b$ and $y = g(x)$ is the unique solution of the equation $f(x,y) = 0$ for all $x \in A$ and $y \in B$. Moreover, for $x \in A$ and $y \in B$, $D_y f(x,y) \neq 0$ and

\begin{equation}
D_g(x) = D_y f(x,g(x))^{-1} D_x f(x,g(x)).
\end{equation}

Proof. Define $H : H \to \mathbb{R}^m$ by $H(x,y) = (x,f(x,y))$. Then $H \in C^r(H)$ and, for $(x,y) \in H$, $D_H(x,y) = D_y f(x,y)$. Therefore $D_H(x,y) \neq 0$. The Implicit Function Theorem implies that there exists an open set U containing (a,b), on which H is differentiable. Therefore H maps an open set containing $H(a,b) = (a,0)$ into U. We can find open sets $A \subset \mathbb{R}^n$ and $B \subset \mathbb{R}^m$, so that $a \in A$, $b \in B$, and $A \times B \subset U$. By continuity, we can also assume that $D_y f(x,y) \neq 0$ on U. Given the form of F, H must be of the form $H(x,y) = (x,h(x,y))$ for some function h in C^r. Define the (linear) projection function $\pi : \mathbb{R}^{n+m} \to \mathbb{R}^m$ by $\pi(x,y) = y$. Then $f = \pi \circ F$ and

\begin{equation}
f(x,h(x,y)) = (f \circ H)(x,y) = ((\pi \circ F) \circ H)(x,y) = (\pi \circ (F \circ H))(x,y) = \pi(x,y) = y.
\end{equation}

It follows that, if we define $g(x) = h(x,0)$, we get $f(x,g(x)) = 0$. The formula (6) for the derivative follows by the chain rule, by differentiating the equation $f(x,g(x)) = 0$.

\qed