
Math 125B, Winter 2015.

Notes on inverse functions

Theorem 1 (Inverse Function Theorem). Assume A ⊆ Rn is open and f : A → Rn is a function
in Cr(A) for some r ≥ 1. Assume that a ∈ A and that detDf(a) 6= 0. Then there exist open sets
U ⊆ A and V ⊆ Rn so that a ∈ U , f : U → V is one-to-one and onto, and f−1 : V → U is in Cr(V ).
Moreover, if y ∈ V , and x ∈ U with f(x) = y, Df(x) is invertible and

(1) Df−1(y) = Df(x)−1.

Remark . The exponent −1 on the right of (1) is the inverse of the n× n matrix Df(x), while on the
left of (1) it indicates the inverse function.

Definition. Assume A ⊆ Rn is open and f : A→ Rn is a function. We say that f has a differentiable
local inverse at a ∈ A if there exist open sets U ⊆ A and V ⊆ Rn so that a ∈ U , f : U → V is
one-to-one and onto, and f−1 : V → U is differentiable on V .

The Inverse Function Theorem gives the sufficient condition for existence of differentiable local
inverse. You should note that f−1 may exist without being differentiable. For example, f : R → R
given by f(x) = x3 is in C∞(R) and has inverse f−1(x) = x1/3 that is not differentiable at x = 0. The
next lemma implies (1) assuming the rest of the Inverse Function Theorem holds.

Lemma 1. Assume A,B ⊆ Rn is open and f : A → B is one-to-one and onto. Assume that a ∈ A,
b = f(a), and that Df(a) and Df−1(b) both exist. Then Df(a) is invertible and

Df−1(b) = Df(a)−1.

Proof. If we denote by I : Rn → Rn the (linear) identity map, then on A

f−1 ◦ f = I,

and then by the chain rule
Df−1(b) ·Df(a) = I,

which ends the proof.

Lemma 1 and Theorem 1 together give the following result, which is the one you should remember
for the exams.

Theorem 2. Assume A ⊆ Rn is open and f : A → Rn is a function in C1(A). Then f has a
differentiable local inverse at a ∈ A if and only if detDf(a) 6= 0 and in this case Df−1(f(a)) =
Df(a)−1.

We now proceed through the proof of Theorem 1, which does require some effort.
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Lemma 2. Assume A ⊆ Rn is open and f : A→ Rn is a function in C1(A) for some r ≥ 1. Assume
that a ∈ A and that detDf(a) 6= 0. Then there exists an open set U ⊆ A with a ∈ U and an α > 0 so
that

(2) ||f(x1)− f(x2)|| ≥ α||x1 − x2||

for all x1, x2 ∈ U . In particular f is one-to-one on U .

Proof. Let T = Df(a). Then

||x1 − x2|| = ||T−1(Tx1 − Tx2)|| ≤M ||Tx1 − Tx2||

for some M > 0. Pick α = 1/(2M).
Now let g(x) = f(x) − Tx. Then, on A, Dg = Df − T and so Dg(a) = 0. As g ∈ C1(A), we can

choose an ε > 0 so that the absolute value of all entries of Dg is strictly less than α/n2 for x ∈ Bε(a).
This ball will be our open set U .

Fix an i ∈ {1, . . . , n}. By the Mean Value Theorem, for any x1, x2 ∈ U , there exists a c ∈ U so
that1

|gi(x1)− gi(x2)| = |∇gi(c) · (x1 − x2)| ≤ n ·
α

n2
||x1 − x2|| =

α

n
||x1 − x2||.

Therefore, ||g(x1)− g(x2)|| ≤ α||x1 − x2||, and then

α||x1 − x2|| ≥ ||g(x1)− g(x2)||
= ||f(x1)− Tx1 − f(x2) + Tx2||
≥ ||Tx1 − Tx2|| − ||f(x1)− f(x2)||
≥ 2α||x1 − x2|| − ||f(x1)− f(x2)||,

from which the claimed inequality follows.

The most difficult part of the proof of Inverse Function Theorem is the next preliminary result.

Lemma 3. Assume A ⊆ Rn is open and f : A → Rn is a function in Cr(A) for some r ≥ 1. Let
B = f(A). If f is one-to-one on A, and detDf(x) 6= 0 for all x ∈ A, then B is open and f−1 : B → A
is in Cr(B).

Proof. We divide the proof into several steps.

Step 1 : B is open.

Pick a b ∈ B, and let a = f−1(B) ∈ A. Then pick an r > 0 so that Q = Br(a) ⊆ A. Then ∂Q
is compact and the so is f(∂Q), which is therefore closed. Moreover, as f is one-to-one, b /∈ f(∂Q).
Thus there is a δ > 0 so that B2δ(b) ∩ f(∂Q) = ∅.

Pick an arbitrary y ∈ Bδ(b) we will show that there is an x0 ∈ A so that f(x0) = y, which will
show that Bδ(b) ⊆ f(A) and establish Step 1. Let ϕ(x) = ||f(x)− y||2. Then ϕ : A→ R is in Cr(A).
As Q is compact, ϕ achieves minimum on Q, say at x0 ∈ Q. Note that

ϕ(a) = ||f(a)− y||2 = ||b− y||2 < δ2,

and so minQ ϕ < δ2. On the other hand, if x ∈ ∂Q, then

||f(x)− y|| ≥ ||f(x)− b|| − ||b− y|| ≥ 2δ − δ = δ,

1Recall that for x ∈ Rn, ||x||∞ = max |xi| and ||x||∞ ≤ ||x||2 ≤
√
n||x||∞.
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which implies that x0 /∈ ∂Q, and thus is a local minimum in the interior of Q. This implies2 that
f(x0) = y.

Step 2 : g = f−1 is continuous.

We need to show that for every open set U ⊆ A, g−1(U) is open. But g−1(U) = f(U), which is
open by Step 1.

Step 3 : g = f−1 is differentiable on B.

Let T = Df(a). We need to show that

(3)
g(b+ k)− g(b)− T−1k

||k||
→ 0

as k → 0.
By Lemma 2, there is an open set U containing a, and some α > 0, such that

||f(x2)− f(x1)|| ≥ α||x2 − x1||

for all x1, x2 ∈ U . By Step 1, there exists an ε > 0 so that b + k ∈ f(U) whenever ||k|| < ε. Thus,
when ||k|| < ε,

||k|| = ||b+ k − b|| ≥ α||g(b+ k)− g(b)||
which we rewrite

(4)
||g(b+ k)− g(b)||

||k||
≤ 1

α
.

We rewrite the expression in (3)

g(b+ k)− g(b)− T−1k
||k||

= −T−1
(
k − T (g(b+ k)− g(b))

||g(b+ k)− g(b)||

)
, · ||g(b+ k)− g(b)||

||k||

and we use (4); also, because −T−1 is linear we obtain an M > 0 so that

||g(b+ k)− g(b)− T−1k||
||k||

≤ M

α
· ||k − T (g(b+ k)− g(b))||

||g(b+ k)− g(b)||
.

Now we let h = g(b+ k)− g(b) = g(b+ k)− a. By continuity of g (Step 2), h→ 0 as k → 0. Observe
that b+ k = f(a+ h) and so k = f(a+ h)− f(a). Therefore,

(5)
||g(b+ k)− g(b)− T−1k||

||k||
≤ M

α
· ||f(a+ h)− f(a)− Th||

||h||
→ 0

as h→ 0, because T = Df(a). Clearly, (5) implies (3).

Step 4 : g = f−1 ∈ Cr(B).

We first assume that r = 1 and show that g ∈ C1(B). We know that Dg(x) = Df(g(x))−1.
Moreover, the entries of the inverse of an invertible matrix T ∈ Rn,n are rational, thus C∞, functions
of entries of T . As g is continuous, and the entries of Df are continuous, this implies that the entries
of Dg are continuous.

Now we proceed by induction on r. Assume the claim holds for functions in Cr−1. If f is in Cr,
then certainly f ∈ Cr−1, and g ∈ Cr−1 by the induction hypothesis. Also, Df is in Cr−1 (or more
precisely its entries are) and so Dg, as a composite function of two Cr−1 functions and a C∞ function
(the inverse) is also in Cr−1. Thus g is in Cr.

2See Problem 7 in Discussion Problems 9.
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Proof of Theorem 1. By Lemma 2, there is an open set U1 ⊆ A, with a ∈ U1, on which f is one-to-one.
As detDf(x) is a continuous function of x on A (as a polynomial in the entries of Df(x)), there is a
open set U2, with a ∈ U2, so that detDf(x) 6= 0 for x ∈ U2. Take U = U1 ∩ U2. Lemma 3 implies
that this set has the propertied claimed in Theorem 1. Finally, as already remarked, (1) follows by
Lemma 1.

Next is the most famous consequence of the Inverse Function Theorem. In it, we view an Rm-
valued function f defined on a subset of Rn+m as a function on Rn × Rm. That is, f is given by
f(x, y), where x ∈ Rn and y ∈ Rm. The next theorem tells us when can we the relation f(x, y) = 0
defines a differentiable function y = g(x) from n variables to m variables. We will denote Dyf to be
the derivative of f with respect to y when x is held constant, that is, the m ×m matrix of partial
derivatives of f with respect to coordinates of y. Similarly, Dxf(x, y) is the m × n matrix of partial
derivatives of f with respect to coordinates of x. We should note that we assume that the coordinates
are arranged so that the last m of them are those of y. That is, of course not necessary: the coordinates
of y could be the first m, or any other among the n+m inputs of f .

Theorem 3 (Implicit Function Theorem). Assume G ⊂ Rn+m is open and f : G → Rm is in Cr(G)
for some r ≥ 1. Suppose (a, b) ∈ G is such that f(a, b) = 0 and detDyf(a, b) 6= 0. Then there is an
open set A ⊂ Rn containing a, an open set B ⊂ Rm containing b, and a function g : A→ B in Cr(A)
so that g(a) = b and y = g(x) is the unique solution of the equation f(x, y) = 0 for all x ∈ A and
y ∈ B. Moreover, for x ∈ A and y ∈ B, detDyf(x, y) 6= 0 and

(6) Dg(x) = Dyf(x, g(x))−1Dxf(x, g(x)).

Proof. Define F : G → Rn+m by F (x, y) = (x, f(x, y)). Then F ∈ C1(G) and, for (x, y) ∈ G,
detDF (x, y) = detDyf(x, y). Therefore DF (a, b) 6= 0. The Implicit Function Theorem implies that
there exists an open set U containing (a, b), on which F has a differentiable inverse H; H maps an
open set containing F (a, b) = (a, 0) into U . We can find open sets A ⊂ Rn and B ⊂ Rm, so that
a ∈ A, b ∈ B, and A×B ⊂ U . By continuity, we can also assume that detDyf(x, y) 6= 0 on U . Given
the form of F , H must be of the form H(x, y) = (x, h(x, y)) for some function h in Cr. Define the
(linear) projection function π : Rn+m → Rm by π(x, y) = y. Then f = π ◦ F and

f(x, h(x, y)) = (f ◦H)(x, y) = ((π ◦ F ) ◦H)(x, y) = (π ◦ (F ◦H))(x, y) = π(x, y) = y.

It follows that, if we define g(x) = h(x, 0), we get f(x, g(x)) = 0. The formula (6) for the derivative
follows by the chain rule, by differentiating the equation f(x, g(x)) = 0.
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