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Multidimensional integration: definitions and main theorems

1 Definition

A (closed) rectangle R ⊆ Rn is a set of the form

R = [a1, b1]× · · · × [an, bn] = {(x1, . . . , xn) : a1 ≤ x1 ≤ b1, . . . , an ≤ x1 ≤ bn}.

Here ak ≤ bk, for k = 1, . . . , n. The (n-dimensional) volume of R is

Vol(R) = Voln(R) = (b1 − a1) · · · (bn − an).

We say that the rectangle is nondegenerate if Vol(R) > 0. A partition P of R is induced by partition
of each of the n intervals in each dimension. We identify the partition with the resulting set of closed
subrectangles of R.

Assume R ⊆ Rn and f : R → R is a bounded function. Then we define upper sum of f with
respect to a partition P, and upper integral of f on R,

U(f,P) =
∑
B∈P

sup
B

f ·Vol(B), (U)

∫
R
f = inf

P
U(f,P),

and analogously lower sum of f with respect to a partition P, and lower integral of f on R,

L(f,P) =
∑
B∈P

inf
B

f ·Vol(B), (L)

∫
R
f = sup

P
L(f,P).

We call f integrable on R if (U)
∫
R f = (L)

∫
R f and in this case denote the common value by∫

R f =
∫
R f(x) dx. As in one-dimensional case, f is integrable on R if and only if Cauchy condition is

satisfied. The Cauchy condition states that, for every ϵ > 0, there exists a partition P so that

U(f,P)− L(f,P) < ϵ.

For f : Rn → R, we define its support , suppf = {x : f(x) ̸= 0}. Then f has compact support if
and only if it vanishes outside a bounded set. Assume that f is a bounded function with compact
support. We define ∫

Rn

f =

∫
R
f

where R is any rectangle such that suppf ⊆ R, provided the integral exists. The definition is justified
by the next theorem.

Theorem 1 (Independence of Supporting Rectangle). If R and R′ are two rectangles such that
suppf ⊆ R and suppf ⊆ R′ and one of the two integrals

∫
R f and

∫
R′ f exists, then the other exists

too, and both are equal.
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Proof. Take any partition that refines R∩R′. As suppf ⊆ R∩R′, the contribution of only subrectangle
of R \ (R ∩ R′) to the upper or to the lower sum is zero. Thus

∫
R f equals

∫
R∩R′ f and the same is

true for
∫
R′ f .

If f : Rn → R has compact support and
∫
Rn exists, we call f (Riemann) integrable on Rn. We

next define an integral of f over a subset of Rn.
The indicator of a set A ⊆ Rn is the function χA : Rn → R given by

χA(x) =

{
1 x ∈ A

0 x /∈ A

If f : A → R is a function, we interpret fχA to be the function defined on Rn by

(fχA)(x) =

{
f(x) x ∈ A

0 x /∈ A

If A is bounded, and f : A → R is a bounded function, we define∫
A
f =

∫
Rn

fχA,

if it exists, that is, if fχA is integrable on Rn. In this case, we say that f in integrable on A. We say
that a bounded set A is Jordan measurable if

∫
Rn χA exist, in which case we define the volume of A

to be

Vol(A) = Voln(A) =

∫
Rn

χA.

We note that integrable functions on Rn satisfy the usual algebraic and monotonicity properties,
inherited from the integral on a rectangle (and proved the same way as in the one-dimensional case).
We will summarize some of them in the next theorem, but note immediately that if f is integrable on
Rn and A ⊆ Rn is Jordan measurable, then f is integrable on A, as fχA is a product of two Riemann
integrable functions.

Theorem 2 (Linearity and Monotonicity). Assume f, g : Rn → R are bounded functions with compact
support, Riemann integrable on Rn. Assume also A,B ⊆ Rn are Jordan measurable.

1. For a, b ∈ R,
∫
A(af + bg) = a

∫
A f + b

∫
A g.

2. If f ≤ g on A, then
∫
A f ≤

∫
A g.

3. The function |f | is integrable on Rn and |
∫
A f | ≤

∫
A |f |.

4. If A ⊆ B and f ≥ 0, then
∫
A f ≤

∫
B f .

5. The sets A ∩B, A ∪B and A \B are also Jordan measurable, and∫
A∪B

f =

∫
A
f +

∫
B
f −

∫
A∩B

f.

In particular, Vol(A ∪B) = Vol(A) + Vol(B)−Vol(A ∩B).

Proof. We only prove the last assertion, others are also proved easily using an indicator argument.
We observe that χA∩B = χA · χB, χA∪B = χA + χB − χA∩B and χA\B = χA − χA∩B. To get the
integral formula, integrate the equality fχA∪B = fχA+fχB−fχA∩B, and to get the volume formula,
we apply the integral formula to f = χA∪B.
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2 Existence

We say that a set A ⊆ Rn has measure zero (or is negligible) if for every ϵ > 0 there exists countably
many rectangles Q1, Q2, . . . so that A ⊆ ∪kQk and

∑
k Vol(Qk) < ϵ.

We get equivalent definitions if the rectangles are required to be open or closed. We will see below
that a set or measure zero is not necessarily Jordan measurable, but if it is, its volume must be zero.
The following famous theorem is the main result on Riemann integrability. We will not discuss its
proof here.

Theorem 3 (Lebesgue Condition for Integrability). A bounded function f with compact support is
Riemann integrable on Rn if and only if the set of its discontinuities has measure zero.

We will now give some useful consequences of the above definition and theorem, with short sum-
maries of their proofs.

Corollary 1. Every countable set has measure zero. More generally, if each of countably many sets
A1, A2, . . . has measure zero, their union ∪kAk has measure zero.

Proof. Cover every set Ak with rectangles of combined length less than ϵ/2k, then gather all the
coverings into a covering of the union, with combined length of size less than ϵ.

Example. If S ⊆ R2 is the set of points in [0, 1]× [0, 1] with rational coordinates, then S is not Jordan
measurable, but is countable, so it has measure zero.

Theorem 4 (Measure Zero and Volume Zero). A nondegenerate rectangle does not have measure zero.
More generally, any set of measure zero has empty interior. Moreover, if S ⊆ Rn is a Jordan measur-
able set of measure zero, and f is a Riemann integrable function on Rn, then

∫
S f = 0; consequently,

Vol(S) = 0. Conversely, if S ⊆ Rn is a Jordan measurable set of zero volume, then it has measure
zero.

Proof. Fix an ϵ > 0 such that ϵ < Vol(R). Take a nondegenerate closed rectangle R, and assume that
it has measure zero. Then cover it by open rectangles Qk of combined volume less than ϵ. As R is
compact, it is covered by finitely many of Qk, say Q1, . . . , Qn, which means that

∑n
k=1 χQk

≥ 1 on R.
Then, by linearity of integral,

Vol(R) =

∫
R
1 ≤

∫
R

n∑
k=1

χQk
≤

n∑
k=1

∫
R
χQk

≤
n∑

k=1

Vol(Qk) < ϵ,

contradiction. It follows that a set of measure zero cannot contain a nondegenerate rectangle and thus
has empty interior.

If S is Jordan measurable and f is integrable, then fχS is integrable. Take a rectangle R that
encloses S, and a partition P of R. Any B ∈ P must include a point outside S, and so L(fχS ,P) ≤ 0
and U(fχS ,P) ≥ 0. Therefore (L)

∫
R fχS ≤ 0 and (U)

∫
R fχS ≥ 0, and then, as fχS is integrable,

0 =
∫
R fχS =

∫
S f . In particular, 0 =

∫
S χS = Vol(S).

To prove the last assertion, take any ϵ > 0. Pick a rectangle R so that S ⊆ R. As Vol(S) =∫
R χS = 0, there is a partition P of R so that U(χS ,P) < ϵ. Observe that

U(χS ,P) =
∑

B∈P:B∩S ̸=∅

Vol(B)

and so the cover of S that consists of rectangles B ∈ P that intersect S has combined volume less
than ϵ.
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Corollary 2. A bounded set A ⊆ Rn is Jordan measurable if and only if ∂A has measure 0. Conse-
quently, if A is Jordan measurable, so are A◦, A and ∂A. Furthermore, if f : Rn → R is Riemann
integrable on Rn and A ⊆ Rn is Jordan measurable, then

∫
∂A f = 0, and

∫
A f =

∫
A◦ f =

∫
A f

Proof. First claim follows from the fact that ∂A is exactly the set of discontinuities of χA. Jordan
measurabilty of A◦, A, and ∂A follows because ∂(A◦) ⊆ ∂A, ∂A ⊆ ∂A and ∂(∂A) ⊆ ∂A. As ∂A is
Jordan measurable and has measure 0,

∫
∂A f = 0 by the previous theorem. So,∫

A
f =

∫
A◦

f +

∫
∂A

f =

∫
A◦

f.

Moreover A ∩ ∂A is also Jordan measurable with measure 0 and then∫
A
f =

∫
A◦

f +

∫
A∩∂A

f =

∫
A◦

f.

Theorem 5 (Continuous Functions and Jordan Measurability). Assume K ⊆ Rn is compact and
Jordan measurable. Assume also that f, g : K → Rn are continuous and g ≤ f on K. Then

(i) f is Riemann integrable on K;

(ii) The region L = {(x, y) ∈ Rn+1 : x ∈ K and g(x) ≤ y ≤ f(x)} is Jordan measurable in Rn+1.

Proof. The claim (i) follows from the Lebesgue’s condition (Theorem 3). To prove (ii), we may assume
that g = 0 and f ≥ 0. Why? Assume we have proved the theorem for this case. We then observe that
the theorem holds also for

L1 = {(x, y) ∈ Rn+1 : x ∈ K and c ≤ y ≤ f(x)},

for arbitrary c ∈ R, as we can reduce it to the case c = 0 by adding (0,−c). Then it also holds for

L2 = {(x, y) ∈ Rn+1 : x ∈ K and c ≤ y ≤ g(x)},

and for
L3 = {(x, y) ∈ Rn+1 : x ∈ K and c ≤ y < g(x)},

because ∂L2 = ∂L3. Finally, of we choose c = infK g, then L = L1 \ L3.
Let R be a rectangle with K ⊆ R and P a partition of R. (Define f(x) to be 0 for x /∈ K.) Then

U(χKf,P) =
∑
B∈P

sup
B

(χKf) ·Voln(B) =
∑

B∈P:B∩K ̸=∅

sup
B

f ·Voln(B)

and
L(χKf,P) =

∑
B∈P:B⊆K

inf
B

f ·Voln(B).

Let R̃ = R× [0, supK f ]; this is a rectangle in Rn+1 and L ⊆ R̃. In addition,∪
B∈P:B⊆K

B × [0, inf
K

f ] ⊆ L ⊆
∪

B∈P:B∩K ̸=∅

B × [0, sup
K

f ].
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Let P̃ be a partition of R̃ which refines all rectangles B × [0, infK f ] for B ⊆ K, and all rectangles
B × [0, supK f ] for B ∩K ̸= ∅. Then

U(χL, P̃) ≤
∑

B∈P:B∩K ̸=∅

sup
B

f ·Voln(B) = U(χKf,P)

and similarly
L(χL, P̃) ≥ L(χKf,P).

So
U(χL, P̃)− L(χL, P̃) ≤ U(χKf,P)− L(χKf,P).

By (i), for every ϵ > 0 there exists a partition P so that U(χKf,P)− L(χKf,P) < ϵ, and so

U(χL, P̃)− L(χL, P̃) < ϵ,

which proves (ii).

Corollary 3. In the setting of the previous theorem, let

graph(f) = {(x, f(x)) : x ∈ K} ⊆ Rn+1

be the graph of f . Then graph(f) is Jordan measurable in Rn+1 and Voln+1(graphf) = 0.

Proof. Take first g to be a constant function, equal to any constant below infK f and consider the
resulting L in the statement of the previous theorem. Then graph(f) ⊆ ∂L, thus graph(f) has
measure zero. Moreover, graph(f) is Jordan measurable, as we can see by taking g = f in the
previous theorem.

3 Connection to Iterated Integrals

Theorem 6 (Fubini’s Theorem). Assume A ⊆ Rn and B ⊆ Rm are rectangles, and form the rectangle
R = A × B ⊆ Rn+m. Assume that f : R → R is bounded. We write f = f(x, y) for x ∈ A, y ∈ B.
Define the functions IU , IL : A → R by

IU (x) = (U)

∫
B
f(x, y) dy, IL(x) = (L)

∫
B
f(x, y) dy.

Assume f is integrable on R. Then IU and IL are integrable on A and∫
R
f =

∫
A
IU =

∫
A
IL.

Proof. Let P be a partition of R; then P is given by

P = PA × PB = {RA ×RB : RA ∈ PA, RB ∈ PB}

where PA is a partition of A and PB is a partition of B.

Step 1 . L(f,P) ≤ L(IL,PA).

The key is this obvious inequality

inf
RA×RB

f ≤ inf
RB

f(x0, y), for every x0 ∈ RA.
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Therefore, for every x0 ∈ RA,∑
RB∈PB

inf
RA×RB

f ·Volm(RB) ≤ L(f(x0, ·),PB) ≤ (L)

∫
B
f(x0, y) dy = IL(x0)

and so ∑
RB∈PB

inf
RA×RB

f ·Volm(RB) ≤ inf
RA

IL.

Multiply this by Voln(RA) and sum over RA ∈ PA to get the claim in Step 1.

Step 2 . U(f,P) ≥ U(IL,PA).

This follows by the same argument as for Step 1.

Step 3 . Conclusion of the proof.

It follows from Steps 1 and 2 that

(L)

∫
R
f ≤ (L)

∫
A
IL ≤ (L)

∫
A
IU ≤ (U)

∫
A
IU ≤ (U)

∫
R
f

(L)

∫
R
f ≤ (L)

∫
A
IL ≤ (U)

∫
A
IL ≤ (U)

∫
A
IU ≤ (U)

∫
R
f,

so all these are equal.

Corollary 4. In the setting of the previous theorem, if
∫
B f(x, y) dy exists (as a Riemann integral of

the function y 7→ f(x, y)) for every x ∈ A, then∫
R
f =

∫
A

(∫
B
f(x, y) dy

)
dx.

Similarly, if
∫
A f(x, y) dx exists for every y ∈ B, then∫

R
f =

∫
B

(∫
A
f(x, y) dx

)
dy.

Both of these are true when f is continuous on R.

Proof. The first two assertions follow directly from the Fubini’s theorem. The last follows because
continuity of f implies that x 7→ f(x, y) is continuous for every y, and y 7→ f(x, y) is continuous for
every x.

4 Improper Integrals

The next example shows that a bounded continuous function on an open set is not necessarily in-
tegrable. This is one of the reasons improper integrals are needed; the statement of the change of
variables theorem (see the next section) is very cumbersome if we are restricted to Jordan regions.

Example. Let q1, q2, . . . be an enumeration of Q ∩ (0, 1). Define Gk to be the open interval of length
1/2k+2 centered at qk, that is

Gk = (qk − 1/2k+3, qk + 1/2k+3).
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Let
A =

∪
k≥1

Gk ∩ (0, 1).

Observe that the sum of the lengths of Gk is 1/4. Moreover, A ⊆ (0, 1) is open as a union of open
sets and A = [0, 1]. Assume that ∂A has measure zero, which means that there are countably many
open intervals of combined length at most 1/4 that cover ∂A. The open intervals in the definition
of A, together with those that cover ∂A, cover A ∪ ∂A = A = [0, 1], and have a combined length
at most 1/4 + 1/4 = 1/2. As [0, 1] is compact, a finite selection I1, . . . , Ik of these covers [0, 1].
This means that χI1 + . . . + χIk ≥ χ[0,1], and now by taking the integral of both sides, we get
1/2 ≥

∫
χI1 + . . .+

∫
χIk ≥

∫
χ[0,1] = 1, a contradiction. Thus ∂A does not have measure 0, A is not

Jordan measurable and χA is not integrable. We will see that we can still define the length of A by
approximation by compact Jordan measurable intervals from the inside. (Exact computation of the
length depends on the enumeration of rational numbers in (0, 1) and is likely to be hard.)

Assume G ⊆ Rn is an open set, which is now not necessarily bounded. Assume f : G → [0,∞).
We say that f is locally integrable on G if it is integrable on K for every compact Jordan measurable
K ⊆ G. 1 If f is continuous on G, it is locally integrable by Theorem 5. We do not , however, assume
that f is bounded on G.

We will say that f has an improper integral on G if it is locally integrable and the following
supremum over all compact Jordan measurable subsets K ⊆ G is finite:

sup
K

∫
K
f < ∞.

In this case we denote the supremum also as
∫
G f . If f : G → R is not necessarily positive, then we

define ∫
G
f =

∫
G
f+ −

∫
G
f−,

provided that the two integrals on the left side of the equation both exist. Thus the improper integral∫
G f exists if and only if

∫
G |f | =

∫
G f++

∫
G f− exists. The improper integral shares a lot of properties

of the proper one, and we now state the counterpart to Theorem 2,

Corollary 5. Assume f, g : Rn → R are functions whose improper integrals on open sets A,B ⊆ Rn

exist.

1. For a, b ∈ R,
∫
A(af + bg) exists and equals a

∫
A f + b

∫
A g.

2. If f ≤ g on A, then
∫
A f ≤

∫
A g.

3. The inequality |
∫
A f | ≤

∫
A |f | holds.

4. If A ⊆ B and f ≥ 0, then
∫
A f ≤

∫
B f .

5. The improper integrals
∫
A∩B f , and

∫
A∪B f exist and∫

A∪B
f =

∫
A
f +

∫
B
f −

∫
A∩B

f.

Proof. All but last statement are routine exercises. The last one is also routine if A ∩ B = ∅, but
otherwise a little tricky, as one needs to find suitable compact subsets of A∩B. As we will not really
use it, we omit the proof.

1By a standard compactness argument, f is locally integrable on G if and only every point x ∈ G has is a center of a
nondegenerate rectangle Rx ⊆ G on which f is integrable. This is why we call this local integrability.
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Theorem 7 (Bounded Functions on Bounded Open Sets). Assume G ⊆ Rn is bounded and open, and
that f : G → R is bounded and locally integrable on G. Then the improper integral

∫
G f exists. The

condition holds when f is bounded and continuous on G.

Proof. If |f | ≤ M , and G is included in a rectangle R, then the supremum in the definition is bounded
by M ·Vol(R).

As we use the same notation, it needs to be clear from the context whether the proper or the
improper integral is meant. At least some of the confusion is cleared by the next theorem.

Theorem 8 (Proper and Improper Integrals). Assume G ⊆ Rn is open and bounded, and that a
function f : G → R is Riemann integrable on G (in the previous proper sense). Then the improper
integral

∫
G f exists and equals to the proper integral

∫
G f .

Proof. It is enough to prove this when f ≥ 0. If K ⊆ G is compact and Jordan measurable, then
clearly

∫
K f ≤

∫
G f , so that supK

∫
K f ≤

∫
G f . To show the opposite inequality, pick a rectangle R

that includes G and a partition P of R. Let KP be the compact set obtained as the union of all
rectangles B1, . . . , Bk of P that are completely included in G. As the contribution to L(fχG,P) from
all the other rectangles in P is 0,

L(fχG,P) =
k∑

i=1

inf
Bi

f ·Vol(Bi) ≤
k∑

i=1

∫
Bi

f =

∫
KP

f ≤ sup
K

∫
K
f,

and so ∫
G
f = sup

P
L(fχG,P) ≤ sup

K

∫
K
f

and the two inequalities imply ∫
G
f = sup

K

∫
K
f.

In order to compute an improper integral, we need a sequence of sets that fill in G, and the next
theorem provides a justification. The theorem is only of theoretical significance and we will not discuss
it beyond its statement.

Theorem 9 (Improper Integrals and Nested Sequences I). Assume G ⊆ Rn is open, and f : G →
[0,∞) is locally integrable on G. Assume that we have a sequence of sets Ki ⊆ G so that each Ki

is compact and Jordan measurable, Ki ⊆ K◦
i+1 for each i, and ∪iKi = G. Define the nondecreasing

sequence of numbers

Ii =

∫
Ki

f.

If the sequence Ii converges to a finite number, then the improper integral
∫
G f exists and equals the

limit of this sequence. Conversely, if the sequence Ii diverges to ∞, then the improper integral
∫
G f

does not exist.

By far the most useful is the last theorem of this section, which the one to remember and use
together with Theorem 8 and Corollary 2. Namely, the simplest way to compute an improper integral
over an open region G is to write it as a suitable union of Jordan measurable open sets on which f is
integrable in the proper sense.
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Theorem 10 (Improper Integrals and Nested Sequences II). Assume G ⊆ Rn is open, and f : G → R
is continuous. Assume that G1 ⊆ G2 ⊆ · · · is a sequence of open sets whose union is G. Then the
improper integral

∫
G f exists if and only each improper integral Ik =

∫
Gk

|f | exists and the increasing
sequence Ik converges. In this case,

lim
k→∞

∫
Gk

f =

∫
G
f.

Proof. Again, it suffices to give a proof when f ≥ 0. Assume first that
∫
G f < ∞. Then Ik =

∫
Gk

f ≤∫
G f and so I = lim Ik exists and

I ≤
∫
G
f.

Conversely, assume that I = lim Ik exists. Pick a compact Jordan measurable subset of G. Then K
is covered by the sets Gk, hence by finitely many of them, hence (as they are nested) by one of them,
say GK . Then, by definition of the improper integral over the open set GK ,∫

K
f ≤

∫
GK

f ≤ I

and therefore by definition of the improper integral over the open set G,∫
G
f ≤ I.

5 Change of Variables

Assume A,B ⊆ Rn are open sets. We say that a function g : A → B is diffeomorphism if g is one-to-
one and onto, g ∈ C1(A) and g−1 ∈ C1(B). Remember that a necessary (but not sufficient) condition
for g to be a diffeomorphism is that detDg(a) ̸= 0 for all a ∈ A.

The best formulation of our capstone theorem is in terms of open sets and thus in terms of improper
integrals.

Theorem 11 (Change of Variables). Assume A,B ⊆ Rn are open sets and that a function g : A → B
is a diffeomorphism. Assume f : B → Rn is a function. Then f is integrable on B if and only if
(f ◦ g)|detDg| is integrable on A and∫

B
f =

∫
A
(f ◦ g) · | detDg|.

All known proofs of this theorem are quite demanding and require a sophisticated localization
argument. Therefore we merely explain why the theorem has this form. The aforementioned local-
ization argument reduces the problem to the case where g is linear, in which case it is given by an
invertible matrix T . Moreover, a further approximation argument implies reduction to the case where
f is constant (which can then be taken to be 1 by linearity). The question then becomes: why is the
volume of TA, for a Jordan measurable set A, equal to |detT | times the volume of A?

The best explanation (if not a completely rigorous proof) is through the very useful singular value
decomposition of T . To review, this decomposition gives orthogonal matrices U and V and a diagonal
matrix D, with strictly positive diagonal entries called singular values, so that

T = UDV T .
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Since U and V T are orthogonal matrices, their determinants are either 1 or −1. Therefore,

|detT | = detD.

Moreover, orthogonal transformations preserve the shape of sets and thus do not change the volume.
The only transformation in the decomposition that changes the volume is D. How does, then, D =
diag(λ1, . . . , λn) change the volume of a set A? By chopping A into small pieces, we may assume that A
is a nondegenerate rectangle, say A = [a1, b1]×· · ·×[an, bn]. ThenDA = [λ1a1, λ1b1]×· · ·×[λnan, λnbn]
and

Vol(DA) =
n∏

k=1

(λkbk − λkak) =
n∏

k=1

λk ·
n∏

k=1

(bk − ak) = detD ·Vol(A),

and so
Vol(TA) = detD ·Vol(A) = |detT | ·Vol(A).

This given a nice geometric meaning of the determinant: it measures how a linear map transforms the
volume.
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