Math 127A, Fall 2019.
Discussion Problems 10

Note. The problems marked with (*) are part of the practice final. They will not be discussed in the
last discussion session. The solutions to all problems are provided.

1. Assume f: R — R is a function.

a) Show that f is continuous if and only if, for every closed set FF C R, f~(F) is closed.

b) Show that f is continuous if and only if, for every open set G C R, f~(G) is open.

c) Assume f is continuous and F' C R is closed. Is it necessarily true that f(F) is closed?

d)(*) Assume that f is continuous and K C R is compact. Is it necessarily true that f(K) is
compact?

(e)(*) Assume that f is continuous and K C R is compact. Is it necessarily true that f~!(K) is
compact?

(f)(*) Assume that f is continuous and A C R is bounded. Is it necessarily true that f(A) is bounded?
(g)(*) Assume that f(K) is compact for every K C R. Is f necessarily continuous?

(h)(*) Assume that f is continuous. Show that its set of zeros, {x € R: f(z) = 0} is closed.
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2. Let F' C R be a nonempty closed set and let g(z) = inf{|z — 2| : z € F'} be the distance of = to F.
Show that g is uniformly continuous, and is nonzero on F°.

3. Show that if f : A — R is uniformly continuous, and set A is bounded, then its range f(A) is
bounded. Is this still true if f is merely continuous? (Note that this in not the same question as 1(f),
as f is not defined and continuous on R!)

4. (a)(*) Prove that f(z) = V&2 + 1 is uniformly continuous on (0, c0).
(b) Prove that f(z) = z\/x is not uniformly continuous on [0, c0).

5. Problem 4.5.2 in the book.
6. Problem 4.5.6 (a) in the book.

7(*). (a) Let f be a continuous function on the closed interval [0, 1] with range also contained in [0, 1].
Prove that f must have a fixed point; that is, show that there exists an x € [0, 1] so that f(x) = =.
(b) Is the conclusion in (a) true if f is a continuous function on the open interval (0,1) with range
also contained in (0,1)? (c) Is the conclusion in (a) true if f is a continuous decreasing function on
the open interval (0, 1) with range also contained in (0,1)?



1. (a) (=) Assume F is closed. Assume z,, € f~1(F), and x,, — x. Then f(x,) € F (by definition),

and f(x,) — f(x) (by continuity), and finally f(z) € F (as F is closed). Then x € f~1(F). It follows

that f~!(F) is closed.

(«<=) Now assume that f is not continuous, that is, there exists a sequence z,, — x so that f(z) /4

f(x). By passing to a subsequence, we may assume that there is an € > 0 so that |f(z,) — f(z)| > €.

Consider the set F' = V.(f(x))¢. This is a closed set, as the complement of open set Ve(f(x)). Now,

as f(zn) ¢ Ve(f(x)), and so x, € f~Y(F). But clearly f(z) ¢ F, so x ¢ f~*(F). So, f~1(F) is not

closed. We have found a closed set whose preimage f~!(F) is not closed.

(b) This follows from (a) and the fact that f~1(F¢) = (f~1(F))°.

(¢) No. Assume F' = [0,00), and f(x) = 1/(1 4+ |z|). This function maps [0, c0) to (0, 1].

(d) Yes. This follows from the theorem we proved is class, as a continuous function on R is also

continuous as a function on any subset of R, thus in particular on K. We can of course also reproduce

the proof, which we do here. Assume that y, € f(K). Then y, = f(xy), z, € K, and so there is a

subsequence z,, converging to z € K. Then, by continuity, y,, = f(zn,) = f(z) € f(K). We have

found a subsequence of (y,,) with a limit in f(K).

(e) No. Assume f(x) = 0 for all z, i.e., f is the constant zero function. Then {0} is compact, but
~1({0}) = R is not compact.

(f) If A is bounded, A C [-M, M| for some M > 0. Then f(A) C f(—M,M]), and f([-M, M]) is

compact (by (d)), thus bounded.

(g) Assume that

1 >0
f(m):{o £ <0

Then f(K) is finite thus compact for every set K, but f is not continuous.
(h) This follows from (a) The set of zeros is the preimage f~1({0}), and {0} is closed.

2. We first prove that f is nonzero on F€¢. If g(x) = 0, there must exist a sequence z, € F, so that
|z — 2z, < 1/n. But this means that z, — z, and, as F is closed, z € F.

Pick an € > 0. We claim that if |z — y| < ¢/2, then |g(z) — g(y)| < €. Find a 21 € F so that
|z — 21| < g(z) +€/2 and a 29 € F so that |y — 22| < g(y) + €/2. Then

g(2) < |z — 2| <|z—yl+ |y — 2| <e/2+9(y) +€/2=g(y) +e

By symmetry also
9(y) < g(z) +e

and so |g(z) — g(y)| < e.

3. We know from class that continuity is not enough: for example, f(z) = 1/z on (0, 1) is not bounded.

Now assume that f is uniformly continuous. Pick € = 1 and find a ¢ so that |z — y| < ¢ implies
|f(x) — f(y)| < 1. Then, for any a € R, and any interval [a,a + §), there exists a constant M, so
that |f(z)| < M, for every x € [a,a 4+ §) N A. Indeed, either [a,a + 0) N A = @ (in which case we
can take M, = 0), or there exists an z¢ € [a,a + 0) N A, and then for every = € [a,a + 0) N A,
lf(@)] <|f(zo)| + |f(z) = f(zo)| < |f(zo)| + 1 and so we can take M, = |f(xo)| + 1.

As A is bounded, there exits an N > 0 so that A C [N, N], We can cover [N, N| with finitely
many intervals [a;,a; + §), ¢ = 1,...n, by putting them side-by-side (i.e., a; = —N + iJ), and then
f(z) <max{M,, :i=1,...,n}.

4. (a) By algebra,
(z —y)(x+y)
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and then the inequalities |z| < V22 + 1 and |y| < \/y? + 1 imply that

B I lyl o
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Uniform continuity follows: given an ¢ > 0, we may take 0 = ¢/2, as then |z — y| < ¢ implies

f@) = fly)l <e
(b) Let ,, =n+1/y/n, yo = n. Then z,, — y, = 1/y/n — 0. Moreover,
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proving that f is not uniformly continuous by a theorem from the lecture.

5. (a) For example, f(x) = sinz on (—27,27). (We assume here that it is known that sinz is a
continuous function on R that satisfies the properties from trigonometry.)

(b) Impossible. The range of a continuous function on a closed interval is a closed interval, by the
intermediate value theorem.

(c) Let f =1/(1 — 22) on (—1,1). The range is [1,00).

(d) Impossible. By the intermediate value theorem, if every rational number is in the range of f, all
real numbers are in the range of f.

6. Denote a = f(0) = f(1). Define the function g : [0,1/2] — R by g(z) = f(x + 1/2) — f(z). Then
9(0) = f(1/2) —a amd g(1/2) = a— f(1/2) = —g¢(0). So either g(0) and g(1/2) have the opposite sign
or they are both 0. By the intermediate value theorem, there exists an = € [0,1/2] so that g(x) = 0.
This means that f(z + 1/2) = f(z) and we can take y = x + 1/2 to get the desired z and y.

7. (a) Let g : [0,1] — R be defined by g(z) = f(x) —z. Then g is continuous, as the difference between
two continuous functions, ¢g(0) = f(0) > 0 and ¢g(1) = f(1) — 1 < 0. By intermediate value theorem,
there exists an = € [0, 1] so that g(x) = 0. This means that f(z) =

(b) No. Take the function f(z) = 22.

(c) Yes. Let g: (0,1) — R be again defined by g(x) = f(x) — . Then lim,_,o g(z) = lim,_o f(z) >0
(note that this is the same as the right limit at 0, as 0 is the left endpoint of the domain of f) and
limg 1 g(z) = limy—1 f(x) — 1 < 0 (this time, this is the same as the left limit at 1). Therefore there
exist x1,22 € (0,1) so that x; < z2 and g(x;) > 0 and g(x2) < 0. Then, by the intermediate value
theorem, there exists an x € [z1, x2] so that g(z) = 0.



