
Math 127A, Fall 2019.

Discussion Problems 10

Note. The problems marked with (*) are part of the practice final. They will not be discussed in the
last discussion session. The solutions to all problems are provided.

1. Assume f : R→ R is a function.
(a) Show that f is continuous if and only if, for every closed set F ⊆ R, f−1(F ) is closed.
(b) Show that f is continuous if and only if, for every open set G ⊆ R, f−1(G) is open.
(c) Assume f is continuous and F ⊆ R is closed. Is it necessarily true that f(F ) is closed?
(d)(*) Assume that f is continuous and K ⊆ R is compact. Is it necessarily true that f(K) is
compact?
(e)(*) Assume that f is continuous and K ⊆ R is compact. Is it necessarily true that f−1(K) is
compact?
(f)(*) Assume that f is continuous and A ⊆ R is bounded. Is it necessarily true that f(A) is bounded?
(g)(*) Assume that f(K) is compact for every K ⊆ R. Is f necessarily continuous?
(h)(*) Assume that f is continuous. Show that its set of zeros, {x ∈ R : f(x) = 0} is closed.

2. Let F ⊆ R be a nonempty closed set and let g(x) = inf{|x− z| : z ∈ F} be the distance of x to F .
Show that g is uniformly continuous, and is nonzero on F c.

3. Show that if f : A → R is uniformly continuous, and set A is bounded, then its range f(A) is
bounded. Is this still true if f is merely continuous? (Note that this in not the same question as 1(f),
as f is not defined and continuous on R!)

4. (a)(*) Prove that f(x) =
√
x2 + 1 is uniformly continuous on (0,∞).

(b) Prove that f(x) = x
√
x is not uniformly continuous on [0,∞).

5. Problem 4.5.2 in the book.

6. Problem 4.5.6 (a) in the book.

7(*). (a) Let f be a continuous function on the closed interval [0, 1] with range also contained in [0, 1].
Prove that f must have a fixed point; that is, show that there exists an x ∈ [0, 1] so that f(x) = x.
(b) Is the conclusion in (a) true if f is a continuous function on the open interval (0, 1) with range
also contained in (0, 1)? (c) Is the conclusion in (a) true if f is a continuous decreasing function on
the open interval (0, 1) with range also contained in (0, 1)?
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1. (a) (=⇒) Assume F is closed. Assume xn ∈ f−1(F ), and xn → x. Then f(xn) ∈ F (by definition),
and f(xn)→ f(x) (by continuity), and finally f(x) ∈ F (as F is closed). Then x ∈ f−1(F ). It follows
that f−1(F ) is closed.
(⇐=) Now assume that f is not continuous, that is, there exists a sequence xn → x so that f(x) 6→
f(x). By passing to a subsequence, we may assume that there is an ε > 0 so that |f(xn)− f(x)| ≥ ε.
Consider the set F = Vε(f(x))c. This is a closed set, as the complement of open set Vε(f(x)). Now,
as f(xn) /∈ Vε(f(x)), and so xn ∈ f−1(F ). But clearly f(x) /∈ F , so x /∈ f−1(F ). So, f−1(F ) is not
closed. We have found a closed set whose preimage f−1(F ) is not closed.
(b) This follows from (a) and the fact that f−1(F c) = (f−1(F ))c.
(c) No. Assume F = [0,∞), and f(x) = 1/(1 + |x|). This function maps [0,∞) to (0, 1].
(d) Yes. This follows from the theorem we proved is class, as a continuous function on R is also
continuous as a function on any subset of R, thus in particular on K. We can of course also reproduce
the proof, which we do here. Assume that yn ∈ f(K). Then yn = f(xn), xn ∈ K, and so there is a
subsequence xnk

converging to x ∈ K. Then, by continuity, ynk
= f(xnk

) → f(x) ∈ f(K). We have
found a subsequence of (yn) with a limit in f(K).
(e) No. Assume f(x) = 0 for all x, i.e., f is the constant zero function. Then {0} is compact, but
f−1({0}) = R is not compact.
(f) If A is bounded, A ⊆ [−M,M ] for some M ≥ 0. Then f(A) ⊆ f(−M,M ]), and f([−M,M ]) is
compact (by (d)), thus bounded.
(g) Assume that

f(x) =

{
1 x ≥ 0

0 x < 0

Then f(K) is finite thus compact for every set K, but f is not continuous.
(h) This follows from (a) The set of zeros is the preimage f−1({0}), and {0} is closed.

2. We first prove that f is nonzero on F c. If g(x) = 0, there must exist a sequence zn ∈ F , so that
|x− zn| < 1/n. But this means that zn → x, and, as F is closed, x ∈ F .

Pick an ε > 0. We claim that if |x − y| < ε/2, then |g(x) − g(y)| < ε. Find a z1 ∈ F so that
|x− z1| ≤ g(x) + ε/2 and a z2 ∈ F so that |y − z2| < g(y) + ε/2. Then

g(x) ≤ |x− z2| ≤ |x− y|+ |y − z2| ≤ ε/2 + g(y) + ε/2 = g(y) + ε.

By symmetry also
g(y) ≤ g(x) + ε

and so |g(x)− g(y)| < ε.

3. We know from class that continuity is not enough: for example, f(x) = 1/x on (0, 1) is not bounded.
Now assume that f is uniformly continuous. Pick ε = 1 and find a δ so that |x − y| < δ implies

|f(x) − f(y)| < 1. Then, for any a ∈ R, and any interval [a, a + δ), there exists a constant Ma so
that |f(x)| ≤ Ma for every x ∈ [a, a + δ) ∩ A. Indeed, either [a, a + δ) ∩ A = ∅ (in which case we
can take Ma = 0), or there exists an x0 ∈ [a, a + δ) ∩ A, and then for every x ∈ [a, a + δ) ∩ A,
|f(x)| ≤ |f(x0)|+ |f(x)− f(x0)| ≤ |f(x0)|+ 1 and so we can take Ma = |f(x0)|+ 1.

As A is bounded, there exits an N > 0 so that A ⊂ [−N,N ], We can cover [−N,N ] with finitely
many intervals [ai, ai + δ), i = 1, . . . n, by putting them side-by-side (i.e., ai = −N + iδ), and then
f(x) ≤ max{Mai : i = 1, . . . , n}.

4. (a) By algebra,

f(x)− f(y) =
(x− y)(x+ y)

√
x2 + 1 +

√
y2 + 1

,
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and then the inequalities |x| ≤
√
x2 + 1 and |y| ≤

√
y2 + 1 imply that

|f(x)− f(y)| ≤ |x− y| ·

(
|x|√
x2 + 1

+
|y|√
y2 + 1

)
≤ 2|x− y|.

Uniform continuity follows: given an ε > 0, we may take δ = ε/2, as then |x − y| < δ implies
f(x)− f(y)| < ε.
(b) Let xn = n+ 1/

√
n, yn = n. Then xn − yn = 1/

√
n→ 0. Moreover,

f(xn)− f(yn) = n(

√
n+ 1/

√
n−
√
n) +

1√
n

√
n+ 1/

√
n

= n
n+ 1/

√
n− n√

n+ 1/
√
n+
√
n

+
1√
n

√
n+ 1/

√
n

=

√
n√

n+ 1/
√
n+
√
n

+
1√
n

√
n+ 1/

√
n

→ 1

2
+ 1 =

3

2
,

proving that f is not uniformly continuous by a theorem from the lecture.

5. (a) For example, f(x) = sinx on (−2π, 2π). (We assume here that it is known that sinx is a
continuous function on R that satisfies the properties from trigonometry.)
(b) Impossible. The range of a continuous function on a closed interval is a closed interval, by the
intermediate value theorem.
(c) Let f = 1/(1− x2) on (−1, 1). The range is [1,∞).
(d) Impossible. By the intermediate value theorem, if every rational number is in the range of f , all
real numbers are in the range of f .

6. Denote a = f(0) = f(1). Define the function g : [0, 1/2] → R by g(x) = f(x + 1/2) − f(x). Then
g(0) = f(1/2)−a amd g(1/2) = a− f(1/2) = −g(0). So either g(0) and g(1/2) have the opposite sign
or they are both 0. By the intermediate value theorem, there exists an x ∈ [0, 1/2] so that g(x) = 0.
This means that f(x+ 1/2) = f(x) and we can take y = x+ 1/2 to get the desired x and y.

7. (a) Let g : [0, 1]→ R be defined by g(x) = f(x)−x. Then g is continuous, as the difference between
two continuous functions, g(0) = f(0) ≥ 0 and g(1) = f(1) − 1 ≤ 0. By intermediate value theorem,
there exists an x ∈ [0, 1] so that g(x) = 0. This means that f(x) = x.
(b) No. Take the function f(x) = x2.
(c) Yes. Let g : (0, 1)→ R be again defined by g(x) = f(x)− x. Then limx→0 g(x) = limx→0 f(x) > 0
(note that this is the same as the right limit at 0, as 0 is the left endpoint of the domain of f) and
limx→1 g(x) = limx→1 f(x)− 1 < 0 (this time, this is the same as the left limit at 1). Therefore there
exist x1, x2 ∈ (0, 1) so that x1 < x2 and g(x1) > 0 and g(x2) < 0. Then, by the intermediate value
theorem, there exists an x ∈ [x1, x2] so that g(x) = 0.
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