Math 25, Fall 2014.

Discussion problems 4 Solutions

1. (a) No. Take a,, = —n which diverges to —oo and so does any subsequence.

(b) Let a = sup A. For any b < a, there is an n such that a,, > b (by definition of sup A), and such
that a, < a (as max A does not exist). Choose n; so that a,, € (a —1,a). Then recursively define
ny so that ng 1 > ng, an,,, > an,, and a,, € (a —1/k,a). As a —1/k < a,, < a, an, — a by order
theorems.

2. (a) (=) Let a = limsupa,, and pick an ¢ > 0. Then (by the theorem from lecture), there is an
N € N so that n > N implies a,, < a + €. As a < b, this implies a,, < b+ €.
(«<=) By the order theorem for limsup, for any € > 0, limsup a,, < b+ e. Thus limsupa,, <b.

(b) Choose ny so that an, € (a —1,a + 1). Then recursively define nj so that ngy1 > ng, and
an, € (@ —1/k,a + 1/k). This is possible as there are infinitely many terms of the sequence in
(a—1/k,a+1/k). Asa—1/k < an, <a—+1/k, ap, — a by order theorems.

(c) Pick a convergent subsequence (ay, ) and arbitrary € > 0. For all but finitely many k, a,, < a+e.
Then by order theorems limy, a,, < a + €. As this holds for arbitrary € > 0, limy a,, < a.

(d) Let a = limsup a,, and b = limsup b,,, and pick any € > 0. Then there exists an N € N so that,
forn > N, a, <a-+¢€and b, <b+e Then, forn > N, a, +b, < a+ b+ e. By order theorems,
limsup(a, + b,) < a+ b+ €. As this holds for arbitrary € > 0, limsup(a,, + b,) < a + b.

Take (a,) = (1,0,1,0,...) and (b,) = (0,1,0,1,...). Then limsupa, = limsupb, = 1 and
limsup(a, + b,) = 1 # 2 = limsup a,, + lim sup b,,.
(e) By (d), we have limsup(a, + b,) < lima, + limsupb,. For the reverse inequality, write b, =
(an+bp)—ay, and use (d) again to get lim sup b, < limsup(a,,+by,)+limsup(—ay). But —a,, converges
with limit — lim a,,, which is then also its limsup. Thus limsupb,, < limsup(a, + b,) — lima,, and
lim sup by, + lim a,, < limsup(a, + b,,). The two inequalities prove the claimed equality.
(f) The statement is true and we will prove the converse: if L = limsupa, and ¢ = liminf a,, and
¢ < L, then there exists a bounded sequence b, so that limsup(a, + b,) # limsup a,, + limsup b,.
Assume that a,, is a subsequence that converges to ¢, and define b,, to be L —/¢ if n = nj, for some k and
0 otherwise. Then limsupb,, = L — ¢, limsup(a,, + b,) = L, and limsup a,, + limsup b, = 2L — ¢ > L.
(g) First we observe that

liminf(a,) = — limsup(—ay),

which follows by definition and can be used to easily prove all properties below using the already
proved facts about lim sup.

(a’) We have liminf a,, > b if and only if, for every € > 0, there exists an N € N so that n > N implies
anp >b—e.

(b’) Let a = lim inf a,,. There exists a subsequence of (a,) that converges to a.

(¢’) Let a = liminf a,. The limit of any convergent subsequence of (a,,) is greater or equal to «.

(d’) We have liminf(a,, + b,) > liminf a,, + liminf b,,, but equality does not always hold.

(e’) Assume that (ay) is a convergent sequence and (by,) is a bounded sequence. Then lim inf(a,,+b,) =
lim a,, + liminf b,,.



(f) If a bounded sequence (ay,) of real numbers is such that liminf(a, + b,) = liminf a,, + liminf b,
for every bounded sequence (b,,), then (a,) converges.

3. (a) Clearly 1 < 2. If z,, < 2, then 2,11 < /1 + 2 = /3 < 2. Thus the boundedness claim follows
by induction.

Next we prove that x, < x4+ for all n. This is true for n =1 as z9 = V2. Assuming z,, < Tp41,
14z, <14 2zp41 and then /1 + x,, < /T + 241, that is, 2,41 < x,42. By induction, the sequence
is increasing.

(b) As the sequence is monotone and bounded, x = lim z,, exists. Then 1+ x,, — 1 + x by algebraic
limit theorem, and then /1 + x,, — v/1 + 2 by the homework problem 2.3.1. Therefore, x must satisfy
r=+1+z,22—2—1=0. As z, > 1 for all n, > 1. The only solution of the quadratic equation
with = > 1 is z = (14 v/5)/2, the golden ratio, which is the answer.

4. Rewrite
5

Tn+1°
Note that 9 = 3/2 > 1 and, by standard induction (as in problem 3), x,, is increasing. Also z,, < 4

implies z,11 < 3, so by induction the sequence is bounded above by 4. Then z = lim x,, exists, and
satisfies > 1 and 22 — 3z + 1 = 0, thus z = (3 + v/5)/2.

Tpy1 =4 —

5. Let a, =1 —b,. Then a; = 1 and any1 = 3an(a, —2). If a, € (0,1], then a,41 € [—1/2,0), while
if a, € [-1/2,0), then a,41 € (0,1]. By induction, a,, is bounded and changes sign at every step,
thus a,, never becomes monotone (and neither does b,). Moreover, if a,, > 0, then |ap41| = —ap41 =
n — %a% < ap. Also, if a, >0, apio = a, + %ai(an —4) (after some algebra), so ap42 < ay. It follows
that the subsequence of positive terms agy 1 converges to limit a € [0, 1] which satisfies a®(4 —a) = 0,
thus a = 0. Then the subsequence of negative terms converges to 0 as well. Thus lima,, = 1.

6. (a) The fact that 0 < b, < 1 is easily proved by induction. (b) Let y,, = by ---b,. We have y; =1/3
and Yp4+1 = %yg + %yn Also, 0 < y, < 1 by (a). Then y2 < yp, 50 Ynt1 < Yn. Thus y = limy,, exists
and y < 1. Also y? —y =0,s0 y = 0. As 3b,11 = yp + 2, limb,, = 2/3.

7. By induction, a,, > 0 for every n. Moreover, as > a1 and then by standard induction a,4+1 > an
for all n. Thus the sequence is increasing. If it is bounded, then it must converge to a limit, say a,
satisfying a®> — 2a + a = 0. If a > 1, this equation has no real solution, so the sequence must be
unbounded.

Assume now that a < 1. We prove by induction that a, < 1+ +/1 — « for all n. For n = 1 this
holds as /2 < 14 +/1 — a. Assuming the validity for n, it is a simple check that a,+1 = %(a +a2) <
1+ /1 — a. Therefore (a,) is bounded and thus converges to a limit a > /2. As o/2 >1—+/1 — «,
a=1++v1—-oq.

8. (a) As —1/n < (=1)"n~! < 1/n, the sandwich theorem implies that lim z,, = 2, and so liminf z,, =
lim sup x,, = 2.

(b) For even n = 2k, wo, = 2k + 1/(2k) — oo. For odd n = 2k + 1, zop, = 2/(2k + 1) — 0. It follows
that lim sup z,, = oo and liminf z,, = 0.

(c) If n is divisible by 4, i.e., n = 4k for some integer k > 0, x,, = 2+ 7/n — 2. When n = 4k + 1,
Tp = =7/n — 0. Whenn =4k +2, z, = 7/n — 0. Whenn =4k +3, z, = -2 —-T7/n — —2.
Therefore, liminf z,, = —2 and lim sup z,, = 2.



