Math 127A, Fall 2019.

Discussion problems 8

1. In each case below, determine whether the set A is compact. Whenever A is not compact, find a sequence of elements of A that has no convergent subsequence with limit in A, and an open cover of A without a finite subcover.

(a) $A = [0, 2] \cap \mathbb{Q}$. (b) $A = [0, 2] \cup \{3\}$. (c) $A = \{\frac{6n+7}{2n+5} : n \in \mathbb{N}\} \cup \{3\}$. (d) $A = [0, \infty) \setminus (\bigcup_{n=1}^{\infty} (n^2 + 2, n^2 + 3n))$. (e) $A = [0, 1] \cup (2, 3]$.

2. Show that a set $A \subseteq \mathbb{R}$ is bounded if and only if its closure \overline{A} is compact.

3. Assume that $A \subseteq \mathbb{R}$ is compact. Prove that $\sup A \in A$, and $\inf A \in A$; that is, the set A has a maximum and a minimum.

4. For each of the following statements determine, with proof, whether it is true or false.

(a) If If $A \subseteq \mathbb{R}$ is finite, then it is compact.

(b) If $A \subseteq \mathbb{R}$ is compact then A^c is open.

(c) If $A \subseteq \mathbb{R}$ is compact then $A \cap (0, 1)$ is compact.

(d) If $A \subseteq \mathbb{R}$ is compact, and $x_n \in A$, then (x_n) is a convergent sequence.

(e) If $A \subseteq \mathbb{R}$, and there exist an open cover of A with a finite subcover, then A is compact.

(f) If $A \subseteq \mathbb{R}$ is compact, and (x_n) is a convergent sequence with limit in A, then $A \cup \{x_n : n \in \mathbb{N}\}$ is compact.