
Math 127A, Fall 2019.

Discussion Problems 9

Note. These problems are also practice exam for Midterm 2. They are a bit longer than the actual
exam, which will otherwise be similar. My advice is to give yourself 60 minutes and no distractions to
write out the solutions before the discussion on Thursday . Problems 1(a–d), 2, 3(a) are problems 2,
3, 4(b) from the sample midterm 2, where you can find the solutions. Solutions to Problems 1(e–g),
3(b), 4, and 5 are on page 3.

1. For part (a), you may use without definition the concept of limit of a sequence. Then, for each
of the series in (b), (c), (d), determine (with proof) whether it converges absolutely, converges condi-
tionally, or diverges.
(a) Assume an, n ∈ N, are real numbers. Define precisely what these two statements mean:

∑∞
k=1 ak

converges absolutely;
∑∞

k=1 ak converges conditionally.

(b)

∞∑
k=1

(
1

k
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k!

)
(c)

∞∑
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(
3k
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)k

(d)

∞∑
k=1

(−1)k+1 1√
k

(e)

∞∑
n=1

2n√
n!

(f)

∞∑
n=1

n− 1

n2 + 1

(g)
∞∑
n=1

(
n− 1

n
− n

n + 1

)

2. Assume that ak > 0 for all k ∈ N. For each statement below, prove it or find a counterexample.

(a) If ak = 1 for all even k, then
∞∑
k=1

ak diverges.

(b) If

∞∑
k=1

ak converges, then

∞∑
k=1

(ak + a2k) converges.

(c) If

∞∑
k=1

(−1)k+1ak converges, then

∞∑
k=1

a2k converges.

3. (a) Prove: if lim inf(nan) = 2, then
∑∞

n=1 an is a divergent series.
(b) True or false: if lim sup(nan) = 2, then

∑∞
n=1 an is a divergent series.

4. In all parts, fix an r > 0. (a) Assume that A ⊆ R is arbitrary. Show that the set

G = {x ∈ R : |x− a| < r for some a ∈ A}
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is open.
(b) Assume that A ⊆ R is arbitrary. Is the set

B = {x ∈ R : |x− a| ≤ r for some a ∈ A}

necessarily closed?
(c) Assume that A ⊆ R is closed. Prove that the set B in (b) is closed.
(d) Assume that A ⊆ R is compact. Prove that the B in (b) is compact.

5. For each of the following statements determine, with proof, whether it is true or false.
(a) If A ⊆ R is connected, then Ac is connected.
(b) If A ⊆ R is connected, then Ac is disconnected.
(c) If A ⊆ R is closed then A ∩ [0, 1] is compact.
(d) The set {(−1)n/n : n ∈ N} is closed.
(e) If A ⊆ R is bounded, its closure A is also bounded.
(f) If a set A ⊆ R is unbounded, its interior A◦ is also unbounded.
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1. We will denote by an the nth term in each case.
(e) Using the ratio test, we get

an+1

an
=

2n+1
√
n!

2n
√

(n + 1)!
=

2√
n + 1

→ 0,

and so the series converges.
(f) We use the limit comparison test with bn = 1/n. As

an
1/n

=
n2 − n

n2 + 1
→ 1,

and
∑

n bn is the harmonic series, so it diverges. The series diverges.
(g) We rewrite, using algebra,

an =
−1

n(n + 1)
= − 1

n
+

1

n + 1
.

This is a telescoping series that converges to −1.

Solution to 3(b). False. The idea is that if lim sup(nan) = 2, most terms may vanish. For example,
assume that an = 0 expect when n is a perfect square, when it is 2/n. The sequence nan may
be divided into two subsequences, one constantly 0, and one constantly 2. So, lim sup(nan) = 2.
Moreover,

∞∑
n=1

an =
∞∑
k=1

2

k2
,

which is a convergent series.

Solution to 4. (a) We can rewrite

G =
⋃
a∈A

Vr(a) =
⋃
a∈A

(a− r, a + r),

which is open as a union of open sets, namely open intervals.
(b) Not necessarily. Note first that

B =
⋃
a∈A

[a− r, a + r].

Take A = {1/n : n ∈ N} and r = 1. Then

B =
⋃
n∈N

[−1 + 1/n, 1 + 1/n] = [0, 2] ∪ [−1/2, 3/2] ∪ [−2/3, 4/3] ∪ . . . = (−1, 2],

which is not closed, as it does not include its accumulation point −1.
(c) Assume xn ∈ B = ∪a∈A[a − r, a + r], and xn → x. So, there are an ∈ A so that |xn − an| ≤ r.
Then |an| ≤ |xn| + |an − xn| ≤ |xn| + r. As (xn) is a bounded sequence, so is (an). By Bolzano-
Weierstrass, there is a convergent subsequence (ank

), with ank
→ a. As A is closed, a ∈ A. But

then |xnk
− ank

| → |x − a| and, as |xnk
− ank

| ≤ r, |x − a| ≤ r by the order theorem. It follows that
x ∈ [a− r, a + r] ⊆ B.
(d) If A is compact, then A is also closed, so we know that B is closed, from (c). So we only need to
prove that B is bounded. As A is bounded, there exists an M so that |a| ≤M for all a ∈ A. If b ∈ B,
there is an a ∈ A so that b ∈ [a− r, a+ r], i.e., |b− a| ≤ r. Then |b| ≤ |a|+ |b− a| ≤M + r, thus B is
bounded.
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Solution to 5. (a) False. For example, A = [0, 1] is connected, but Ac = (−∞, 0) ∪ (1,∞) is not
connected.
(b) False. For example, A = [0,∞) is connected, and so is Ac = (−∞, 0).
(c) True. As intersection of two closed sets, A ⊆ R is closed. As A∩[0, 1] ⊆ [0, 1], and [0, 1] is bounded,
A ∩ [0, 1] is bounded. A closed bounded set is compact.
(d) False. The accumulation point 0 is not in the set
(e) True. There exists an M so that |a| ≤ M for all a ∈ A, that is, A ⊆ [−M,M ]. As [−M,M ] is
closed, A ⊂ [−M,M ], and so A is included in a bounded interval, thus bounded.
(f) False. The A = N is unbounded, but its interior is empty.
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